Author
Listed:
- M. R. Vanner
(University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ))
- J. Hofer
(University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ))
- G. D. Cole
(University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ))
- M. Aspelmeyer
(University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ))
Abstract
Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum non-demolition measurements were first introduced in the 1970s for gravitational wave detection, and now such techniques are an indispensable tool throughout quantum science. Here we perform measurements of the position of a mechanical oscillator using pulses of light with a duration much shorter than a period of mechanical motion. Utilizing this back-action-evading interaction, we demonstrate state preparation and full state tomography of the mechanical motional state. We have reconstructed states with a position uncertainty reduced to 19 pm, limited by the quantum fluctuations of the optical pulse, and we have performed ‘cooling-by-measurement’ to reduce the mechanical mode temperature from an initial 1,100 to 16 K. Future improvements to this technique will allow for quantum squeezing of mechanical motion, even from room temperature, and reconstruction of non-classical states exhibiting negative phase-space quasi-probability.
Suggested Citation
M. R. Vanner & J. Hofer & G. D. Cole & M. Aspelmeyer, 2013.
"Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,"
Nature Communications, Nature, vol. 4(1), pages 1-8, October.
Handle:
RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3295
DOI: 10.1038/ncomms3295
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3295. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.