Author
Listed:
- Shan Jiang
(University of California)
- Rui Cheng
(University of California)
- Xiang Wang
(University of California
California NanoSystems Institute, University of California)
- Teng Xue
(University of California)
- Yuan Liu
(University of California)
- Andre Nel
(University of California
California NanoSystems Institute, University of California)
- Yu Huang
(University of California
California NanoSystems Institute, University of California)
- Xiangfeng Duan
(University of California
California NanoSystems Institute, University of California)
Abstract
Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π–π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene–hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene–hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.
Suggested Citation
Shan Jiang & Rui Cheng & Xiang Wang & Teng Xue & Yuan Liu & Andre Nel & Yu Huang & Xiangfeng Duan, 2013.
"Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity,"
Nature Communications, Nature, vol. 4(1), pages 1-7, October.
Handle:
RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3225
DOI: 10.1038/ncomms3225
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3225. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.