IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2867.html
   My bibliography  Save this article

Transcription factor binding kinetics constrain noise suppression via negative feedback

Author

Listed:
  • Andreas Grönlund

    (Science For Life Laboratory, Uppsala University
    Umeå Plant Science Centre, Umeå University)

  • Per Lötstedt

    (Uppsala University)

  • Johan Elf

    (Science For Life Laboratory, Uppsala University)

Abstract

Negative autoregulation, where a transcription factor regulates its own expression by preventing transcription, is commonly used to suppress fluctuations in gene expression. Recent single molecule in vivo imaging has shown that it takes significant time for a transcription factor molecule to bind its chromosomal binding site. Given the slow association kinetics, transcription factor mediated feedback cannot at the same time be fast and strong. Here we show that with a limited association rate follows an optimal transcription factor binding strength where noise is maximally suppressed. At the optimal binding strength the binding site is free a fixed fraction of the time independent of the transcription factor concentration. One consequence is that high-copy number transcription factors should bind weakly to their operators, which is observed for transcription factors in Escherichia coli. The results demonstrate that a binding site’s strength may be uncorrelated to its functional importance.

Suggested Citation

  • Andreas Grönlund & Per Lötstedt & Johan Elf, 2013. "Transcription factor binding kinetics constrain noise suppression via negative feedback," Nature Communications, Nature, vol. 4(1), pages 1-5, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2867
    DOI: 10.1038/ncomms2867
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2867
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.