IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2340.html
   My bibliography  Save this article

Exotic non-Abelian anyons from conventional fractional quantum Hall states

Author

Listed:
  • David J. Clarke

    (University of California
    California Institute of Technology)

  • Jason Alicea

    (University of California
    California Institute of Technology)

  • Kirill Shtengel

    (University of California
    Microsoft Research, Station Q, Elings Hall, University of California
    Institute for Quantum Information, California Institute of Technology)

Abstract

Non-Abelian anyons—particles whose exchange noncommutatively transforms a system’s quantum state—are widely sought for the exotic fundamental physics they harbour and for quantum computing applications. Numerous blueprints now exist for stabilizing the simplest type of non-Abelian anyon, defects binding Majorana modes, by interfacing widely available materials. Here we introduce a device fabricated from conventional fractional quantum Hall states and s-wave superconductors that supports exotic non-Abelian defects binding parafermionic zero modes, which generalize Majorana bound states. We show that these new modes can be experimentally identified (and distinguished from Majoranas) using Josephson measurements. We also provide a practical recipe for braiding parafermionic zero modes and show that they give rise to non-Abelian statistics. Interestingly, braiding in our setup produces a richer set of topologically protected operations when compared with the Majorana case. As a byproduct, we establish a new, experimentally realistic Majorana platform in weakly spin–orbit-coupled materials such as gallium arsenide.

Suggested Citation

  • David J. Clarke & Jason Alicea & Kirill Shtengel, 2013. "Exotic non-Abelian anyons from conventional fractional quantum Hall states," Nature Communications, Nature, vol. 4(1), pages 1-9, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2340
    DOI: 10.1038/ncomms2340
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2340
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.