Author
Listed:
- E. Tian
(Developmental Glycobiology Unit, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health)
- Matthew P. Hoffman
(Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health)
- Kelly G. Ten Hagen
(Developmental Glycobiology Unit, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health)
Abstract
Extracellular microenvironments have crucial roles in modulating cell interactions during development. Here we discover that a conserved protein modification (O-glycosylation) influences extracellular matrix composition during mammalian organogenesis, affecting integrin signalling and fibroblast growth factor-mediated cell proliferation. Specifically, mice deficient for an enzyme (Galnt1) that adds sugars to proteins during early stages of organogenesis resulted in intracellular accumulation of major basement membrane proteins and endoplasmic reticulum stress, with resultant effects on fibroblast growth factor signalling, epithelial cell proliferation and organ growth. Exogenous addition of basement membrane components rescued fibroblast growth factor signalling and the growth defects in a β1-integrin-dependent manner. Our work demonstrates for the first time that O-glycosylation influences the composition of the extracellular matrix during mammalian organ development, influencing specific aspects of the endoplasmic reticulum stress response, cell signalling, cell proliferation and organ growth. Our work provides insight into the role of this conserved protein modification in both development and disease.
Suggested Citation
E. Tian & Matthew P. Hoffman & Kelly G. Ten Hagen, 2012.
"O-glycosylation modulates integrin and FGF signalling by influencing the secretion of basement membrane components,"
Nature Communications, Nature, vol. 3(1), pages 1-10, January.
Handle:
RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1874
DOI: 10.1038/ncomms1874
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1874. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.