Author
Listed:
- Takashi Akera
(Graduate School of Science, University of Tokyo)
- Masamitsu Sato
(Graduate School of Science, University of Tokyo
PRESTO, Japan Science and Technology Agency)
- Masayuki Yamamoto
(Graduate School of Science, University of Tokyo
Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Chiba 292-0818, Japan..)
Abstract
The mitotic spindle consists of two types of microtubules. Dynamic kinetochore microtubules capture kinetochores, whereas stable interpolar microtubules serve as the structural backbone that connects the two spindle poles. Both have been believed to be indispensable for cell division in eukaryotes. Here we demonstrate that interpolar microtubules are dispensable for the second division of meiosis in fission yeast. Even when interpolar microtubules are disrupted by a microtubule-depolymerizing drug, spindle poles separate and chromosomes segregate poleward in second division of meiosis in most zygotes, producing viable spores. The forespore membrane, which encapsulates the nucleus in second division of meiosis and is guided by septins and the leading-edge proteins, is responsible for carrying out meiotic events in the absence of interpolar microtubules. Furthermore, during physiological second division of meiosis without microtubule perturbation, the forespore membrane assembly contributes structurally to spindle pole separation and nuclear division, generating sufficient force for spindle pole separation and subsequent events independently of interpolar microtubules.
Suggested Citation
Takashi Akera & Masamitsu Sato & Masayuki Yamamoto, 2012.
"Interpolar microtubules are dispensable in fission yeast meiosis II,"
Nature Communications, Nature, vol. 3(1), pages 1-8, January.
Handle:
RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1725
DOI: 10.1038/ncomms1725
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1725. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.