Author
Listed:
- Sergio Brovelli
(University of Milano-Bicocca
Los Alamos National Laboratory)
- Norberto Chiodini
(University of Milano-Bicocca)
- Roberto Lorenzi
(University of Milano-Bicocca)
- Alessandro Lauria
(University of Milano-Bicocca)
- Marco Romagnoli
(Material Processing Center, Massachusetts Institute of Technology)
- Alberto Paleari
(University of Milano-Bicocca)
Abstract
The development of integrated photonics and lab-on-a-chip platforms for environmental and biomedical diagnostics demands ultraviolet electroluminescent materials with high mechanical, chemical and environmental stability and almost complete compatibility with existing silicon technology. Here we report the realization of fully inorganic ultraviolet light-emitting diodes emitting at 390 nm with a maximum external quantum efficiency of ~0.3%, based on SnO2 nanoparticles embedded in SiO2 thin films obtained from a solution-processed method. The fabrication involves a single deposition step onto a silicon wafer followed by a thermal treatment in a controlled atmosphere. The fully inorganic architecture ensures superior mechanical robustness and optimal chemical stability in organic solvents and aqueous solutions. The versatility of the fabrication process broadens the possibility of optimizing this strategy and extending it to other nanostructured systems for designed applications, such as active components of wearable health monitors or biomedical devices.
Suggested Citation
Sergio Brovelli & Norberto Chiodini & Roberto Lorenzi & Alessandro Lauria & Marco Romagnoli & Alberto Paleari, 2012.
"Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices,"
Nature Communications, Nature, vol. 3(1), pages 1-9, January.
Handle:
RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1683
DOI: 10.1038/ncomms1683
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1683. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.