IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1568.html
   My bibliography  Save this article

Genetic dissection of axon regeneration via in vivo electroporation of adult mouse sensory neurons

Author

Listed:
  • Saijilafu

    (Johns Hopkins University School of Medicine)

  • Eun-Mi Hur

    (Johns Hopkins University School of Medicine)

  • Feng-Quan Zhou

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

Abstract

Manipulating gene expression in vivo specifically in neurons with precise spatiotemporal control is important to study the function of genes or pathways in the nervous system. Although various transgenic approaches or virus-mediated transfection methods are available, they are time consuming and/or lack precise temporal control. Here we introduce an efficient electroporation approach to transfect adult dorsal root ganglion (DRG) neurons in vivo that enables manipulation of gene expression in an acute and precise manner. We have applied this method to manipulate gene expression in three widely used in vivo models of axon injury and regeneration, including dorsal column transection, dorsal root rhizotomy and peripheral axotomy. By electroporating DRGs with small interfering RNAs against c-jun to specifically deplete c-Jun in adult neurons, we provide evidence for the role of c-Jun in regulation of in vivo axon regeneration. This method will serve as a powerful tool to genetically dissect axon regeneration in vivo.

Suggested Citation

  • Saijilafu & Eun-Mi Hur & Feng-Quan Zhou, 2011. "Genetic dissection of axon regeneration via in vivo electroporation of adult mouse sensory neurons," Nature Communications, Nature, vol. 2(1), pages 1-10, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1568
    DOI: 10.1038/ncomms1568
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1568
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.