Author
Listed:
- Ken Matsuura
(Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.)
- Takafumi Jigami
(Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.)
- Kenzui Taniue
(Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.)
- Yasuyuki Morishita
(Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.)
- Shungo Adachi
(Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.)
- Takao Senda
(Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.)
- Aya Nonaka
(Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan.)
- Hiroyuki Aburatani
(Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan.)
- Tsutomu Nakamura
(Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.)
- Tetsu Akiyama
(Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.)
Abstract
Cell fusion has a critical role in various developmental processes, immune response, tissue homeostasis and regeneration, and possibly, in cancer. However, the signals that regulate cell fusion remain poorly understood. In a screen for novel targets of Wnt/β-catenin signalling, we identified glial cells missing 1 (GCM1), which encodes a transcription factor that is involved in epigenetic regulation and is critical for the fusion of syncytiotrophoblast (ST) cells. Here we show that β-catenin/BCL9-Like (BCL9L)/T-cell factor 4 (TCF4) signalling directly targets the GCM1/syncytin pathway and thereby regulates the fusion of human choriocarcinoma cells. Furthermore, we show that the GCM1/syncytin-B pathway is significantly downregulated in the placenta of BCL9L-deficient mice and that the fusion and differentiation of ST-II cells are blocked. Our results demonstrate a signal transduction pathway that regulates cell fusion, and may provide intriguing perspectives into the various biological and pathological processes that involve cell fusion.
Suggested Citation
Ken Matsuura & Takafumi Jigami & Kenzui Taniue & Yasuyuki Morishita & Shungo Adachi & Takao Senda & Aya Nonaka & Hiroyuki Aburatani & Tsutomu Nakamura & Tetsu Akiyama, 2011.
"Identification of a link between Wnt/β-catenin signalling and the cell fusion pathway,"
Nature Communications, Nature, vol. 2(1), pages 1-9, September.
Handle:
RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1551
DOI: 10.1038/ncomms1551
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1551. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.