IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1343.html
   My bibliography  Save this article

Helium penetrates into silica glass and reduces its compressibility

Author

Listed:
  • Tomoko Sato

    (Institute for Solid State Physics, University of Tokyo)

  • Nobumasa Funamori

    (University of Tokyo)

  • Takehiko Yagi

    (Institute for Solid State Physics, University of Tokyo)

Abstract

SiO2 glass has a network structure with a significant amount of interstitial voids. Gas solubilities in silicates are expected to become small under high pressure due to compaction of voids. Here we show anomalous behaviour of SiO2 glass in helium. Volume measurements clarify that SiO2 glass is much less compressible than normal when compressed in helium, and the volume in helium at 10 GPa is close to the normal volume at 2 GPa. X-ray diffraction and Raman scattering measurements suggest that voids are prevented from contracting when compressed in helium because helium penetrates into them. The estimated helium solubility is very high and is between 1.0 and 2.3 mol per mole of SiO2 glass at 10 GPa, which shows marked contrast with previous models. These results may have implications for discussions of the Earth's evolution as well as interpretations of various high-pressure experiments, and also lead to the creation of new materials.

Suggested Citation

  • Tomoko Sato & Nobumasa Funamori & Takehiko Yagi, 2011. "Helium penetrates into silica glass and reduces its compressibility," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1343
    DOI: 10.1038/ncomms1343
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1343
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.