IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1266.html
   My bibliography  Save this article

Subcellular in vivo time-lapse imaging and optical manipulation of Caenorhabditis elegans in standard multiwell plates

Author

Listed:
  • Christopher B. Rohde

    (Massachusetts Institute of Technology)

  • Mehmet Fatih Yanik

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

High-resolution in vivo time-lapse assays require repeated immobilization and imaging of whole animals. Here we report a technology for screening Caenorhabditis elegans at cellular resolution over its entire lifespan inside standard multiwell plates using repeated immobilization, imaging and optical manipulation. Our system does not use any fluidic or mechanical components, and can operate for tens of thousands of cycles without failure. It is also compatible with industrial high-throughput screening platforms and robotics, and it allows both chemical, and forward and reverse genetic screens. We used this technology to perform subcellular-resolution femtosecond laser microsurgery of single neurons in vivo, and to image the subsequent regeneration dynamics at subcellular resolution. Our single-neuron in vivo time-lapse analysis shows that neurite regrowth occurring over short time windows is significantly greater than that predicted by ensemble averaging over many animals.

Suggested Citation

  • Christopher B. Rohde & Mehmet Fatih Yanik, 2011. "Subcellular in vivo time-lapse imaging and optical manipulation of Caenorhabditis elegans in standard multiwell plates," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1266
    DOI: 10.1038/ncomms1266
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1266
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.