Author
Listed:
- Candice Kutchukian
(University of California, Department of Physiology and Membrane Biology)
- Maria Casas
(University of California, Department of Physiology and Membrane Biology)
- Rose E. Dixon
(University of California, Department of Physiology and Membrane Biology)
- Eamonn J. Dickson
(University of California, Department of Physiology and Membrane Biology)
Abstract
Lysosomes are essential organelles that regulate cellular homeostasis through complex membrane interactions. Phosphoinositide lipids play critical roles in orchestrating these functions by recruiting specific proteins to organelle membranes. The PIKfyve/Fig4/Vac14 complex regulates PI(3,5)P₂ metabolism, and intriguingly, while loss-of-function mutations cause neurodegeneration, acute PIKfyve inhibition shows therapeutic potential in neurodegenerative disorders. We demonstrate that PIKfyve/Fig4/Vac14 dysfunction triggers a compensatory response where reduced mTORC1 activity leads to ULK1-dependent trafficking of ATG9A and PI4KIIα from the TGN to lysosomes. This increases lysosomal PI(4)P, facilitating cholesterol and phosphatidylserine transport at ER-lysosome contacts to promote membrane repair. Concurrently, elevated lysosomal PI(4)P recruits ORP1L to ER-lysosome-mitochondria three-way contacts, enabling PI(4)P transfer to mitochondria that drives ULK1-dependent fragmentation and increased respiration. These findings reveal a role for PIKfyve/Fig4/Vac14 in coordinating lysosomal repair and mitochondrial homeostasis, offering insights into cellular stress responses.
Suggested Citation
Candice Kutchukian & Maria Casas & Rose E. Dixon & Eamonn J. Dickson, 2025.
"Disruption of the PIKfyve complex unveils an adaptive mechanism to promote lysosomal repair and mitochondrial homeostasis,"
Nature Communications, Nature, vol. 16(1), pages 1-18, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65798-6
DOI: 10.1038/s41467-025-65798-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65798-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.