IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-65570-w.html
   My bibliography  Save this article

Bidirectional quantitative scattering microscopy

Author

Listed:
  • Kohki Horie

    (The University of Tokyo)

  • Keiichiro Toda

    (The University of Tokyo)

  • Takuma Nakamura

    (The University of Tokyo)

  • Takuro Ideguchi

    (The University of Tokyo
    The University of Tokyo)

Abstract

Quantitative phase microscopy (QPM) and interferometric scattering (iSCAT) microscopy are powerful label-free imaging techniques that are widely used in biomedical applications. Each method, however, possesses distinct limitations: QPM, which measures forward scattering (FS), excels at imaging microscale structures but struggles with rapidly moving nanoscale objects, whereas iSCAT, based on backward scattering (BS), is highly sensitive to nanoscale dynamics but lacks the ability to comprehensively image microscale structures. Here, we introduce bidirectional quantitative scattering microscopy (BiQSM), an approach that integrates FS and BS detection using off-axis digital holography with bidirectional illumination and spatial-frequency multiplexing. BiQSM achieves spatiotemporal consistency and a dynamic range 14 times wider than QPM, enabling simultaneous imaging of nanoscale and microscale cellular components. We demonstrate BiQSM’s ability to reveal spatiotemporal behaviors of intracellular structures and small particles using FS and BS images. Time-lapse imaging of dying cells further highlights BiQSM’s potential as a label-free tool for monitoring cellular vital states through structural and motion-related changes. By bridging the strengths of QPM and iSCAT, BiQSM advances quantitative cellular imaging, opening avenues for studying dynamic biological processes.

Suggested Citation

  • Kohki Horie & Keiichiro Toda & Takuma Nakamura & Takuro Ideguchi, 2025. "Bidirectional quantitative scattering microscopy," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65570-w
    DOI: 10.1038/s41467-025-65570-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-65570-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-65570-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin-Sung Park & Il-Buem Lee & Hyeon-Min Moon & Seok-Cheol Hong & Minhaeng Cho, 2023. "Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65570-w. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.