Author
Listed:
- Yichen Xu
(Zhejiang University, School of Earth Sciences & Zhejiang Key Laboratory of Geographic Information Science)
- Song Gao
(University of Wisconsin, Department of Geography)
- Qunying Huang
(University of Wisconsin, Department of Geography)
- Aslıgül Göçmen
(University of Wisconsin, Department of Geography)
- Qiang Zhu
(Zhejiang University, College of Computer Science and Technology)
- Feng Zhang
(Zhejiang University, School of Earth Sciences & Zhejiang Key Laboratory of Geographic Information Science
Ministry of Natural Resources of the People’s Republic of China, Key Laboratory of Spatio-temporal Information and Intelligent Services (LSIIS))
Abstract
Understanding the interaction between complex urban environments and human mobility flow patterns underpins adaptive transport systems, resilient communities, and sustainable urban developments, yet inter-regional origin-destination mobility flow information from traditional surveys are costly to update. The satellite imagery offers up-to-date information on urban sensing and opens avenues to examine urban morphology-mobility dynamics. This study develops a deep learning model, Imagery2Flow for predicting fine-grained human mobility flows in urban areas using 10 to 30-meter medium resolution satellite imagery in a timely and low-cost manner. Extensive experiments demonstrate good performance and flexible spatial-temporal generalizability on the top-10 largest metropolitan statistical areas of the United States. Through exploring the spatial heterogeneous effects, we investigate the urban factors (centrality and compactness) influencing human movement flow distributions, enhancing our comprehension of their interactions. The spatial transferability of Imagery2Flow helps reduce regional inequality by informing decisions in data-poor regions, learning from data-rich ones. Interestingly, the typologies of urban sprawl can help explain the cross-city model generalization capability. The temporal transferability proves that human dynamics of cities and the process of urbanization can be well captured from the observed built environment by remote sensing.
Suggested Citation
Yichen Xu & Song Gao & Qunying Huang & Aslıgül Göçmen & Qiang Zhu & Feng Zhang, 2025.
"Predicting human mobility flows in cities using deep learning on satellite imagery,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65373-z
DOI: 10.1038/s41467-025-65373-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65373-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.