IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64876-z.html
   My bibliography  Save this article

Eigenstate control of plasmon wavepackets with electron-channel blockade

Author

Listed:
  • Shintaro Takada

    (National Metrology Institute of Japan (NMIJ)
    University of Osaka
    University of Osaka
    University of Osaka)

  • Giorgos Georgiou

    (University of Glasgow)

  • Junliang Wang

    (Institut Néel)

  • Yuma Okazaki

    (National Metrology Institute of Japan (NMIJ))

  • Shuji Nakamura

    (National Metrology Institute of Japan (NMIJ))

  • David Pomaranski

    (The University of Tokyo)

  • Arne Ludwig

    (Lehrstuhl für Angewandte Festkörperphysik)

  • Andreas D. Wieck

    (Lehrstuhl für Angewandte Festkörperphysik)

  • Michihisa Yamamoto

    (The University of Tokyo
    Wako)

  • Christopher Bäuerle

    (Institut Néel)

  • Nobu-Hisa Kaneko

    (National Metrology Institute of Japan (NMIJ))

Abstract

Coherent manipulation of plasmon wavepackets in solid-state systems is crucial for advancing nanoscale electronic devices, offering a unique platform for quantum information processing based on propagating quantum bits. Controlling the eigenstate of plasmon wavepackets is essential, as it determines their propagation speed and hence the number of quantum operations that can be performed during their flight time through a quantum system. When plasmon wavepackets are generated by short voltage pulses and transmitted through nanoscale devices, they distribute among multiple electron conduction channels via Coulomb interactions, a phenomenon known as charge fractionalisation. This spreading complicates plasmon manipulation in quantum circuits and makes precise control of the eigenstates of plasmon wavepackets challenging. Using a cavity, we demonstrate the ability to isolate and select electron conduction channels contributing to plasmon excitation, thus enabling precise control of plasmon eigenstates. Specifically, we observe an electron-channel blockade effect, where charge fractionalisation into cavity-confined channels is suppressed due to the plasmon’s narrow energy distribution, enabling more stable and predictable plasmonic circuits. This technique provides a versatile tool for designing plasmonic circuits, offering the ability to tailor plasmon speed through local parameters, minimise unwanted plasmon excitation in adjacent circuits, and enable the precise selection of electron-channel plasmon eigenstates in quantum interferometers.

Suggested Citation

  • Shintaro Takada & Giorgos Georgiou & Junliang Wang & Yuma Okazaki & Shuji Nakamura & David Pomaranski & Arne Ludwig & Andreas D. Wieck & Michihisa Yamamoto & Christopher Bäuerle & Nobu-Hisa Kaneko, 2025. "Eigenstate control of plasmon wavepackets with electron-channel blockade," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64876-z
    DOI: 10.1038/s41467-025-64876-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64876-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64876-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. Freulon & A. Marguerite & J.-M. Berroir & B. Plaçais & A. Cavanna & Y. Jin & G. Fève, 2015. "Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    2. T. Lorenz & M. Hofmann & M. Grüninger & A. Freimuth & G. S. Uhrig & M. Dumm & M. Dressel, 2002. "Evidence for spin–charge separation in quasi-one-dimensional organic conductors," Nature, Nature, vol. 418(6898), pages 614-617, August.
    3. T. Jullien & P. Roulleau & B. Roche & A. Cavanna & Y. Jin & D. C. Glattli, 2014. "Quantum tomography of an electron," Nature, Nature, vol. 514(7524), pages 603-607, October.
    4. J. Dubois & T. Jullien & F. Portier & P. Roche & A. Cavanna & Y. Jin & W. Wegscheider & P. Roulleau & D. C. Glattli, 2013. "Minimal-excitation states for electron quantum optics using levitons," Nature, Nature, vol. 502(7473), pages 659-663, October.
    5. Gregoire Roussely & Everton Arrighi & Giorgos Georgiou & Shintaro Takada & Martin Schalk & Matias Urdampilleta & Arne Ludwig & Andreas D. Wieck & Pacome Armagnat & Thomas Kloss & Xavier Waintal & Tris, 2018. "Unveiling the bosonic nature of an ultrashort few-electron pulse," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    6. Seddik Ouacel & Lucas Mazzella & Thomas Kloss & Matteo Aluffi & Thomas Vasselon & Hermann Edlbauer & Junliang Wang & Clément Geffroy & Jashwanth Shaju & Arne Ludwig & Andreas D. Wieck & Michihisa Yama, 2025. "Electronic interferometry with ultrashort plasmonic pulses," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    7. R. Bisognin & A. Marguerite & B. Roussel & M. Kumar & C. Cabart & C. Chapdelaine & A. Mohammad-Djafari & J.-M. Berroir & E. Bocquillon & B. Plaçais & A. Cavanna & U. Gennser & Y. Jin & P. Degiovanni &, 2019. "Quantum tomography of electrical currents," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seddik Ouacel & Lucas Mazzella & Thomas Kloss & Matteo Aluffi & Thomas Vasselon & Hermann Edlbauer & Junliang Wang & Clément Geffroy & Jashwanth Shaju & Arne Ludwig & Andreas D. Wieck & Michihisa Yama, 2025. "Electronic interferometry with ultrashort plasmonic pulses," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. A. De & C. Boudet & J. Nath & M. Kapfer & I. Farrer & D. A. Ritchie & P. Roulleau & D. C. Glattli, 2025. "Electronic Hong Ou Mandel interferences to unveil the 2/3 fractional quantum Hall edge channel dynamics," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    3. Hwanchul Jung & Dongsung T. Park & Seokyeong Lee & Uhjin Kim & Chanuk Yang & Jehyun Kim & V. Umansky & Dohun Kim & H.-S. Sim & Yunchul Chung & Hyoungsoon Choi & Hyung Kook Choi, 2023. "Observation of electronic modes in open cavity resonator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. I. Taktak & M. Kapfer & J. Nath & P. Roulleau & M. Acciai & J. Splettstoesser & I. Farrer & D. A. Ritchie & D. C. Glattli, 2022. "Two-particle time-domain interferometry in the fractional quantum Hall effect regime," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. L. Kang & X. Du & J. S. Zhou & X. Gu & Y. J. Chen & R. Z. Xu & Q. Q. Zhang & S. C. Sun & Z. X. Yin & Y. W. Li & D. Pei & J. Zhang & R. K. Gu & Z. G. Wang & Z. K. Liu & R. Xiong & J. Shi & Y. Zhang & Y, 2021. "Band-selective Holstein polaron in Luttinger liquid material A0.3MoO3 (A = K, Rb)," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Thomas Werkmeister & James R. Ehrets & Yuval Ronen & Marie E. Wesson & Danial Najafabadi & Zezhu Wei & Kenji Watanabe & Takashi Taniguchi & D. E. Feldman & Bertrand I. Halperin & Amir Yacoby & Philip , 2024. "Strongly coupled edge states in a graphene quantum Hall interferometer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Nan Zhang & Daifeng Tu & Ding Li & Kaixin Tang & Linpeng Nie & Houpu Li & Hongyu Li & Tao Qi & Tao Wu & Jianhui Zhou & Ziji Xiang & Xianhui Chen, 2024. "Abnormally enhanced Hall Lorenz number in the magnetic Weyl semimetal NdAlSi," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64876-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.