IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64818-9.html
   My bibliography  Save this article

Electrochemical deutero-(di)carboxylations for the preparation of deuterium-labeled medicinal building blocks

Author

Listed:
  • Subhojit Mondal

    (University of Alberta)

  • Sahil

    (University of Alberta)

  • Alex Brown

    (University of Alberta)

  • Michael W. Meanwell

    (University of Alberta)

Abstract

Sacrificial anodes have been broadly deployed in electro-synthesis for the development of reductive electrosynthetic reactions. The metal cations released from sacrificial anodes during these processes are widely believed to not affect reaction outcomes. Here, we disclose an electrochemical deutero-(di)carboxylation of acetylenes and cinnamic acids that in fact relies on anodically generated Mg2+ cations to achieve regioselective α-carboxylation to afford deuterated malonic acids with precise control over both the site and amount of deuteration. The unusual, beneficial role of Mg2+ cations on product selectivity is supported by mechanistic studies and density functional theory [ZORA-B3LYP-D3BJ/def2-TZVP/DMF(SMD)] calculations, and is believed to mimic enzymatic α-carboxylation mechanisms. The deuteration patterns in the malonic acid products can be precisely controlled, providing a platform for the concise synthesis of high-value β-d₂- and β-d₁-α-amino acid analogs, as well as other precisely deuterated frameworks.

Suggested Citation

  • Subhojit Mondal & Sahil & Alex Brown & Michael W. Meanwell, 2025. "Electrochemical deutero-(di)carboxylations for the preparation of deuterium-labeled medicinal building blocks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64818-9
    DOI: 10.1038/s41467-025-64818-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64818-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64818-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiang Liu & Lipeng Wu & Ralf Jackstell & Matthias Beller, 2015. "Using carbon dioxide as a building block in organic synthesis," Nature Communications, Nature, vol. 6(1), pages 1-15, May.
    2. Pengfei Li & Chengcheng Guo & Siyi Wang & Dengke Ma & Tian Feng & Yanwei Wang & Youai Qiu, 2022. "Facile and general electrochemical deuteration of unactivated alkyl halides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jonathan D. Dabbs & Caleb C. Taylor & Martin S. Holdren & Sarah E. Brewster & Brian T. Quillin & Alvin Q. Meng & Diane A. Dickie & Brooks H. Pate & W. Dean Harman, 2024. "Designing chemical systems for precision deuteration of medicinal building blocks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zhiwei Zhao & Ranran Zhang & Yaowen Liu & Zile Zhu & Qiuyan Wang & Youai Qiu, 2024. "Electrochemical C−H deuteration of pyridine derivatives with D2O," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengjie Jiao & Jie Zhang & Minyan Wang & Hongjian Lu & Zhuangzhi Shi, 2024. "Metallaphotoredox deuteroalkylation utilizing thianthrenium salts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Anzai Shi & Pengfei Xie & Yanwei Wang & Youai Qiu, 2025. "Photoelectrocatalytic Cl-mediated C(sp3)–H aminomethylation of hydrocarbons by BiVO4 photoanodes," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Yanwei Wang & Qian Wang & Lei Wu & Kangping Jia & Minyan Wang & Youai Qiu, 2024. "Electroreduction of unactivated alkenes using water as hydrogen source," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yu Zhang & Jaro Vanderghinste & Jinxin Wang & Shoubhik Das, 2024. "Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Kai Sun & Chang Ge & Xiaolan Chen & Bin Yu & Lingbo Qu & Bing Yu, 2024. "Energy-transfer-enabled photocatalytic transformations of aryl thianthrenium salts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yushu Jin & Joaquim Caner & Shintaro Nishikawa & Naoyuki Toriumi & Nobuharu Iwasawa, 2022. "Catalytic direct hydrocarboxylation of styrenes with CO2 and H2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    8. Rui Sang & Yuya Hu & Rauf Razzaq & Guillaume Mollaert & Hanan Atia & Ursula Bentrup & Muhammad Sharif & Helfried Neumann & Henrik Junge & Ralf Jackstell & Bert U. W. Maes & Matthias Beller, 2022. "A practical concept for catalytic carbonylations using carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Zhiwei Zhao & Ranran Zhang & Yaowen Liu & Zile Zhu & Qiuyan Wang & Youai Qiu, 2024. "Electrochemical C−H deuteration of pyridine derivatives with D2O," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Min Liu & Tian Feng & Yanwei Wang & Guangsheng Kou & Qiuyan Wang & Qian Wang & Youai Qiu, 2023. "Metal-free electrochemical dihydroxylation of unactivated alkenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Meng He & Rui Li & Chuanqi Cheng & Cuibo Liu & Bin Zhang, 2024. "Microenvironment regulation breaks the Faradaic efficiency-current density trade-off for electrocatalytic deuteration using D2O," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Wangyu Shi & Jordi Benet-Buchholz & Arjan W. Kleij, 2025. "Catalytic transformation of carbon dioxide into seven-membered heterocycles and their domino transformation into bicyclic oxazolidinones," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Panpan Ma & Ting Guo & Hongjian Lu, 2024. "Hydro- and deutero-deamination of primary amines using O-diphenylphosphinylhydroxylamine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Wen-Jie Feng & Zhe Chang & Xi Lu & Yao Fu, 2025. "Electrochemical cobalt-catalyzed semi-deuteration of alkynes to access deuterated Z-alkenes," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    15. Yuman Qin & Robin Cauwenbergh & Suman Pradhan & Rakesh Maiti & Philippe Franck & Shoubhik Das, 2023. "Straightforward synthesis of functionalized γ-Lactams using impure CO2 stream as the carbon source," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Wei Zhang & Zhen Chen & Yuan-Xu Jiang & Li-Li Liao & Wei Wang & Jian-Heng Ye & Da-Gang Yu, 2023. "Arylcarboxylation of unactivated alkenes with CO2 via visible-light photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64818-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.