IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64642-1.html
   My bibliography  Save this article

Engineering polar nanoclusters for enhanced microwave tunability in ferroelectric thin films

Author

Listed:
  • Hanchi Ruan

    (Queen Mary University of London)

  • Hangfeng Zhang

    (Queen Mary University of London)

  • Vladimir Roddatis

    (GFZ Helmholtz Centre for Geosciences)

  • Subhajit Pal

    (Queen Mary University of London)

  • Joe Briscoe

    (Queen Mary University of London)

  • Theo Graves Saunders

    (Queen Mary University of London)

  • Xuyao Tang

    (Queen Mary University of London)

  • Haixue Yan

    (Queen Mary University of London)

  • Yang Hao

    (Queen Mary University of London)

Abstract

Microwave tunable thin films that can dynamically adjust dielectric properties are essential for next-generation communication and sensing technologies. However, achieving high-tunability often comes at the cost of increased dielectric loss or the need for large bias electric fields. In this study, we address this challenge by engineering nanoclusters in a tin doped barium titanate thin film and systematically investigate their polarization behaviour across the ferroelectric–paraelectric transition. The optimized film exhibits outstanding microwave tunability (~74% at 6 GHz under a low DC bias of 15 V), which are attributed to the presence of polar nanoclusters embedded within a macroscopically non-polar cubic matrix, stabilized by subtle structural features such as twin boundaries, local lattice distortions, and compositional variations. Structural and dielectric analyses confirm that these nanoclusters remain active, enabling strong field-induced permittivity modulation near room temperature. This work demonstrates a promising strategy to achieve high tunability with minimal losses in ferroelectric thin films, thereby addressing a key performance trade-off in the design of advanced microwave tunable devices.

Suggested Citation

  • Hanchi Ruan & Hangfeng Zhang & Vladimir Roddatis & Subhajit Pal & Joe Briscoe & Theo Graves Saunders & Xuyao Tang & Haixue Yan & Yang Hao, 2025. "Engineering polar nanoclusters for enhanced microwave tunability in ferroelectric thin films," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64642-1
    DOI: 10.1038/s41467-025-64642-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64642-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64642-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreja Bencan & Emad Oveisi & Sina Hashemizadeh & Vignaswaran K. Veerapandiyan & Takuya Hoshina & Tadej Rojac & Marco Deluca & Goran Drazic & Dragan Damjanovic, 2021. "Atomic scale symmetry and polar nanoclusters in the paraelectric phase of ferroelectric materials," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Zongquan Gu & Shishir Pandya & Atanu Samanta & Shi Liu & Geoffrey Xiao & Cedric J. G. Meyers & Anoop R. Damodaran & Haim Barak & Arvind Dasgupta & Sahar Saremi & Alessia Polemi & Liyan Wu & Adrian A. , 2018. "Resonant domain-wall-enhanced tunable microwave ferroelectrics," Nature, Nature, vol. 560(7720), pages 622-627, August.
    3. Ruitao Li & Diming Xu & Chao Du & Qianqian Ma & Feng Zhang & Xu Liang & Dawei Wang & Zhongqi Shi & Wenfeng Liu & Di Zhou, 2024. "Giant dielectric tunability in ferroelectric ceramics with ultralow loss by ion substitution design," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruitao Li & Diming Xu & Chao Du & Qianqian Ma & Feng Zhang & Xu Liang & Dawei Wang & Zhongqi Shi & Wenfeng Liu & Di Zhou, 2024. "Giant dielectric tunability in ferroelectric ceramics with ultralow loss by ion substitution design," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Fan Zhang & Zhe Wang & Lixuan Liu & Anmin Nie & Yanxing Li & Yongji Gong & Wenguang Zhu & Chenggang Tao, 2024. "Atomic-scale manipulation of polar domain boundaries in monolayer ferroelectric In2Se3," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Zhenhao Fan & Jian Dai & Yuyan Huang & Hang Xie & Yitao Jiao & Wenfeng Yue & Fu Huang & Yuqun Deng & Dawei Wang & Qingfeng Zhang & Yunfei Chang, 2025. "Superior energy storage capacity of polymer-based bilayer composites by introducing 2D ferroelectric micro-sheets," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Chaehwa Jeong & Juhyeok Lee & Hyesung Jo & Jaewhan Oh & Hionsuck Baik & Kyoung-June Go & Junwoo Son & Si-Young Choi & Sergey Prosandeev & Laurent Bellaiche & Yongsoo Yang, 2024. "Revealing the three-dimensional arrangement of polar topology in nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Pengyu Fu & Zimeng Xu & Tiankuang Zhou & Hao Li & Jiamin Wu & Qionghai Dai & Yue Li, 2024. "Reconfigurable metamaterial processing units that solve arbitrary linear calculus equations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jing Wang & Deshan Liang & Jing Ma & Yuanyuan Fan & Ji Ma & Hasnain Mehdi Jafri & Huayu Yang & Qinghua Zhang & Yue Wang & Changqing Guo & Shouzhe Dong & Di Liu & Xueyun Wang & Jiawang Hong & Nan Zhang, 2023. "Polar Solomon rings in ferroelectric nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yongbo Fan & Wanbo Qu & Haifa Qiu & Shuaibing Gao & Lu Li & Zezhou Lin & Yuxuan Yang & Junyi Yu & Lin Wang & Saiwei Luan & Hao Li & Lin Lei & Yang Zhang & Huiqing Fan & Haijun Wu & Shuhui Yu & Haitao , 2025. "High entropy modulated quantum paraelectric perovskite for capacitive energy storage," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    8. Tongxin Wei & Jinzhu Zou & Xuefan Zhou & Miao Song & Yan Zhang & Cewen Nan & Yuanhua Lin & Dou Zhang, 2025. "High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Lei Zhang & Chen Yang & Chenxi Lu & Xingxing Li & Yilin Guo & Jianning Zhang & Jinglong Lin & Zhizhou Li & Chuancheng Jia & Jinlong Yang & K. N. Houk & Fanyang Mo & Xuefeng Guo, 2022. "Precise electrical gating of the single-molecule Mizoroki-Heck reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Haojie Xu & Wuqian Guo & Yu Ma & Yi Liu & Xinxin Hu & Lina Hua & Shiguo Han & Xitao Liu & Junhua Luo & Zhihua Sun, 2022. "Record high-Tc and large practical utilization level of electric polarization in metal-free molecular antiferroelectric solid solutions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Dongfang Chen & Sergey Nisnevich & Liyan Wu & Zongquan Gu & John Carroll & Yizhe Jiang & Cedric J. G. Meyers & Kathleen Coleman & Brendan M. Hanrahan & Lane W. Martin & Ilya Grinberg & Jonathan E. Spa, 2025. "Colossal and tunable dielectric tunability in domain-engineered barium strontium titanate," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    12. Bo Wu & Hong Tao & Kui Chen & Zhipeng Xing & Yan-Qi Wu & Hao-Cheng Thong & Lin Zhao & Chunlin Zhao & Ze Xu & Yi-Xuan Liu & Fang-Zhou Yao & Tianhang Zhou & Jian Ma & Yan Wei & Ke Wang & Shujun Zhang, 2025. "Giant intrinsic electrocaloric effect in ferroelectrics by local structural engineering," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64642-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.