IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64183-7.html
   My bibliography  Save this article

Discovery and mechanism of a highly selective, antifungal acetyl-CoA synthetase inhibitor

Author

Listed:
  • Andrew J. Jezewski

    (University of Iowa)

  • Katy M. Alden

    (University of Iowa)

  • Jonah Propp

    (University of Iowa)

  • Drashti G. Daraji

    (Northern Illinois University)

  • Charles L. Lail

    (Northern Illinois University)

  • Michael E. Heene

    (Northern Illinois University)

  • Andrew J. Fuller

    (University of Iowa)

  • Jeffery C. Ferreira

    (Northern Illinois University)

  • Lijun Liu

    (University of Kansas)

  • Kevin P. Battaile

    (NYX, New York Structural Biology Center)

  • Noelle S. Williams

    (UT Southwestern Medical Center)

  • Bart L. Staker

    (Center for Global Infectious Disease Research Seattle Children’s Research Institute
    Seattle Structural Genomics Center for Infectious Disease (SSGCID))

  • Scott Lovell

    (University of Kansas
    Seattle Structural Genomics Center for Infectious Disease (SSGCID))

  • Timothy J. Hagen

    (Northern Illinois University)

  • Damian J. Krysan

    (University of Iowa
    University of Iowa)

Abstract

Acetyl-CoA synthetases (Acs) have emerged as drug targets for the treatment of cancer, metabolic diseases as well as fungal and parasitic infections. Although a variety of small molecule Acs inhibitors have been discovered, the systematic optimization of these molecules has been slowed by a lack of structural information regarding their mechanism of inhibition. Through a chemical genetic-based, synthetic lethal screen of the human fungal pathogen Cryptococcus neoformans, we identified an isoxazole-based Acs inhibitor with antifungal activity and high selectivity for the C. neoformans Acs1 relative to human ACSS2 as well as to other fungal Acs enzymes. Xray crystallography of the isoxazole-CnAcs1 complex revealed that the isoxazole occupies both the acetyl- and CoA-binding sites of CnAcs1. Biochemically, the isoxazoles display uncompetitive inhibition kinetics that are similar to antimalarial Acs inhibitors also proposed to target the CoA binding site. Consequently, these data provide structural and mechanistic insights into the remarkable selectivity of CoA pocket-targeting Acs inhibitors. As such, targeting fungal and parasitic Acs enzymes for the development of novel anti-infectives can be achieved with high selectivity and, thereby, low host toxicity.

Suggested Citation

  • Andrew J. Jezewski & Katy M. Alden & Jonah Propp & Drashti G. Daraji & Charles L. Lail & Michael E. Heene & Andrew J. Fuller & Jeffery C. Ferreira & Lijun Liu & Kevin P. Battaile & Noelle S. Williams , 2025. "Discovery and mechanism of a highly selective, antifungal acetyl-CoA synthetase inhibitor," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64183-7
    DOI: 10.1038/s41467-025-64183-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64183-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64183-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura C. Ristow & Andrew J. Jezewski & Benjamin J. Chadwick & Mark A. Stamnes & Xiaorong Lin & Damian J. Krysan, 2023. "Cryptococcus neoformans adapts to the host environment through TOR-mediated remodeling of phospholipid asymmetry," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Laura E. Vries & Patrick A. M. Jansen & Catalina Barcelo & Justin Munro & Julie M. J. Verhoef & Charisse Flerida A. Pasaje & Kelly Rubiano & Josefine Striepen & Nada Abla & Luuk Berning & Judith M. Bo, 2022. "Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. C. Martinez Calejman & S. Trefely & S. W. Entwisle & A. Luciano & S. M. Jung & W. Hsiao & A. Torres & C. M. Hung & H. Li & N. W. Snyder & J. Villén & K. E. Wellen & D. A. Guertin, 2020. "mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjun Wang & Junyang Tan & Xiaomin Liu & Wenqi Guo & Mengmeng Li & Xinjie Liu & Yanyan Liu & Wenyu Dai & Liubing Hu & Yimin Wang & Qiuxia Lu & Wen Xing Lee & Hong-Wen Tang & Qinghua Zhou, 2023. "Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Charlotte M. François & Thomas Pihl & Marion Dunoyer de Segonzac & Chloé Hérault & Bruno Hudry, 2023. "Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Mariska Naude & Ashleigh van Heerden & Janette Reader & Mariëtte van der Watt & Jandeli Niemand & Dorè Joubert & Giulia Siciliano & Pietro Alano & Mathew Njoroge & Kelly Chibale & Esperanza Herreros &, 2024. "Eliminating malaria transmission requires targeting immature and mature gametocytes through lipoidal uptake of antimalarials," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Alexander J. Hu & Wei Li & Calvin Dinh & Yongzhao Zhang & Jamie K. Hu & Stefano G. Daniele & Xiaoli Hou & Zixuan Yang & John M. Asara & Guo-fu Hu & Stephen R. Farmer & Miaofen G. Hu, 2024. "CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Selina Bopp & Charisse Flerida A. Pasaje & Robert L. Summers & Pamela Magistrado-Coxen & Kyra A. Schindler & Victoriano Corpas-Lopez & Tomas Yeo & Sachel Mok & Sumanta Dey & Sebastian Smick & Armiyaw , 2023. "Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64183-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.