IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64023-8.html
   My bibliography  Save this article

Micro-nano microbial fuel cell-driven bioelectrochemical tumor therapy

Author

Listed:
  • Ruiyan Li

    (Tianjin University
    Tianjin University)

  • Yong Kang

    (Tianjin University
    Tianjin University)

  • Nana Ran

    (Tianjin University)

  • Gaoli Niu

    (Tianjin University
    Tianjin University)

  • Yueyue Fan

    (Tianjin University
    Tianjin University)

  • Yijing Zhang

    (Tianjin University
    Tianjin University)

  • Jiamin Ye

    (Tianjin University
    Tianjin University)

  • Xue Yuan

    (Tianjin University
    Tianjin University)

  • Jiacheng Shi

    (Tianjin University
    Tianjin University)

  • Mengbin Ding

    (Tianjin University
    Tianjin University)

  • Yuhan Zhang

    (Tianjin University
    Tianjin University)

  • Xiaoyuan Ji

    (Tianjin University
    Tianjin University
    Linyi University)

Abstract

Colorectal cancer remains one of the most challenging malignancies to treat due to its intestinal physiological barrier, extracellular interstitial barrier, and immunosuppressive tumor microenvironment. Here we develop a micro-nano microbial fuel cell system, integrating Desulfovibrio desulfuricans (Dsv) as a biological electron donor and MnO2 as a catalytic electron acceptor, to achieve bioelectrochemical tumor modulation. The Dsv@MnO2-NE-PEG system, featuring norepinephrine-enhanced mucosal adhesion and PEG-mediated mucus penetration, exhibits superior tumor colonization efficiency, prolonged retention, and robust anti-tumor activity. Mechanistically, this system disrupts lactate accumulation in the tumor microenvironment, catalyzes reactive oxygen species generation, and induces pyroptosis instead of apoptosis, thereby enhancing tumor antigen release and immune activation. Further investigations reveal that Mn2+ generated from MnO2 reduction activates the cGAS-STING pathway, promoting dendritic cell maturation, macrophage polarization toward the M1 phenotype, and enhancing CD8+ T cell infiltration while reducing regulatory T cell populations, effectively converting an immunosuppressive tumor into an immunoactive environment.

Suggested Citation

  • Ruiyan Li & Yong Kang & Nana Ran & Gaoli Niu & Yueyue Fan & Yijing Zhang & Jiamin Ye & Xue Yuan & Jiacheng Shi & Mengbin Ding & Yuhan Zhang & Xiaoyuan Ji, 2025. "Micro-nano microbial fuel cell-driven bioelectrochemical tumor therapy," Nature Communications, Nature, vol. 16(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64023-8
    DOI: 10.1038/s41467-025-64023-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64023-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64023-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yangdi Niu & Deming Xue & Xianqi Dai & Gaofu Guo & Xiaoli Yang & Lin Yang & Zhengyu Bai, 2024. "Sustainable power generation from sewage with engineered microorganisms as electrocatalysts," Nature Sustainability, Nature, vol. 7(9), pages 1182-1189, September.
    2. McLane J. Watson & Paolo D. A. Vignali & Steven J. Mullett & Abigail E. Overacre-Delgoffe & Ronal M. Peralta & Stephanie Grebinoski & Ashley V. Menk & Natalie L. Rittenhouse & Kristin DePeaux & Ryan D, 2021. "Metabolic support of tumour-infiltrating regulatory T cells by lactic acid," Nature, Nature, vol. 591(7851), pages 645-651, March.
    3. Chenhui Yang & Hüsnü Aslan & Peng Zhang & Shoujun Zhu & Yong Xiao & Lixiang Chen & Nasar Khan & Thomas Boesen & Yuanlin Wang & Yang Liu & Lei Wang & Ye Sun & Yujie Feng & Flemming Besenbacher & Feng Z, 2020. "Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Orehek & Taja Železnik Ramuta & Duško Lainšček & Špela Malenšek & Martin Šala & Mojca Benčina & Roman Jerala & Iva Hafner-Bratkovič, 2024. "Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Wanfeng Xu & Yun Wang & Shuang Cui & Qiuling Zheng & Yanghao Lin & Qingqing Cui & Yuxin Xie & Yuming Zeng & Chuan Zhang & Yujie Li & Xin Jin & Minna Qin & Huiyong Sun & Haiping Hao & Lijuan Cao, 2025. "Methylcobalamin protects against liver failure via engaging gasdermin E," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Jiawei Wu & Cong Ding & Chuqing Zhang & Zhimin Xu & Zhenji Deng & Hanmiao Wei & Tingxiang He & Liufen Long & Linglong Tang & Jun Ma & Xiaoyu Liang, 2025. "Methionine metabolite spermidine inhibits tumor pyroptosis by enhancing MYO6-mediated endocytosis," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).
    9. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Si-Jia Sun & Xiao-Dong Jiao & Zhi-Gang Chen & Qi Cao & Jia-Hui Zhu & Qi-Rui Shen & Yi Liu & Zhen Zhang & Fang-Fang Xu & Yu Shi & Jie Tong & Shen-Xi Ouyang & Jiang-Tao Fu & Yi Zhao & Jun Ren & Dong-Jie, 2024. "Gasdermin-E-mediated pyroptosis drives immune checkpoint inhibitor-associated myocarditis via cGAS-STING activation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    11. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Yuan Lu & Wenbo He & Xin Huang & Yu He & Xiaojuan Gou & Xiaoke Liu & Zhe Hu & Weize Xu & Khaista Rahman & Shan Li & Sheng Hu & Jie Luo & Gang Cao, 2021. "Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    14. Sheng-Yan Huang & Sha Gong & Yin Zhao & Ming-Liang Ye & Jun-Yan Li & Qing-Mei He & Han Qiao & Xi-Rong Tan & Jing-Yun Wang & Ye-Lin Liang & Sai-Wei Huang & Shi-Wei He & Ying-Qin Li & Sha Xu & Ying-Qing, 2024. "PJA1-mediated suppression of pyroptosis as a driver of docetaxel resistance in nasopharyngeal carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Xiaofeng Xiao & Zechao Zhuang & Shuhu Yin & Jiexin Zhu & Tao Gan & Ruohan Yu & Jinsong Wu & Xiaochun Tian & Yanxia Jiang & Dingsheng Wang & Feng Zhao, 2024. "Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Jingsong Ma & Jiabao Zhao & Chensong Zhang & Jinshui Tan & Ao Cheng & Zhuo Niu & Zeyang Lin & Guangchao Pan & Chao Chen & Yang Ding & Mengya Zhong & Yifan Zhuang & Yubo Xiong & Huiwen Zhou & Shengyi Z, 2025. "Cleavage of CAD by caspase-3 determines the cancer cell fate during chemotherapy," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    17. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    18. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Wang, Haowei & Zhu, Huawei & Zhang, Yanping & Li, Yin, 2024. "Boosting electricity generation in biophotovoltaics through nanomaterials targeting specific cellular locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    20. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64023-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.