IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64019-4.html
   My bibliography  Save this article

Node role of wild boars in virus circulation among wildlife and domestic animals

Author

Listed:
  • Zhongzhong Tu

    (Chinese Academy of Agricultural Sciences)

  • Heting Sun

    (National Forestry and Grassland Administration)

  • Tong Wang

    (Chinese Academy of Agricultural Sciences)

  • Yuhang Liu

    (Chinese Academy of Agricultural Sciences)

  • Yu Xu

    (National Forestry and Grassland Administration)

  • Peng Peng

    (National Forestry and Grassland Administration)

  • Siyuan Qin

    (National Forestry and Grassland Administration)

  • Changchun Tu

    (Chinese Academy of Agricultural Sciences
    Yangzhou University)

  • Biao He

    (Chinese Academy of Agricultural Sciences)

Abstract

Wild boars are considered pest animals in most of their distribution ranges, but their role as virus reservoirs has long been overlooked, with the circulation dynamics of their viruses rarely investigated. Here we prepared a data set, that is, BrCN-Virome, of 9281 viral metagenomes by pan-viromic analyses of 2535 organ and 274 blood samples from 466 healthy and 50 dead wild boars across 127 locations in 26 provincial regions of China. Compared to domestic pigs, BrCN-Virome shows different viromic composition, with a great expansion in the DNA virus diversity. Some wild boar viruses are traced to humans, domestic animals, wildlife, and arthropods, with several evidently or potentially related to epizootics or zoonoses. Pig pathogens spread widely in wild boars and are responsible for a substantial portion of wild boar mortality, with occurrences of co-infection with multiple African swine fever viruses. These results indicate that wild boars are a node animal connecting different animal taxa in the virus circulation network, and that their viruses not only pose a major threat to the pig industry but also challenge wildlife conservation and public health, highlighting the need for routine surveillance of wild boar viruses and active control of the wild boar population.

Suggested Citation

  • Zhongzhong Tu & Heting Sun & Tong Wang & Yuhang Liu & Yu Xu & Peng Peng & Siyuan Qin & Changchun Tu & Biao He, 2025. "Node role of wild boars in virus circulation among wildlife and domestic animals," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64019-4
    DOI: 10.1038/s41467-025-64019-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64019-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64019-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mirte Bosse & Hendrik-Jan Megens & Laurent A. F. Frantz & Ole Madsen & Greger Larson & Yogesh Paudel & Naomi Duijvesteijn & Barbara Harlizius & Yanick Hagemeijer & Richard P. M. A. Crooijmans & Martie, 2014. "Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Dongming Zhao & Encheng Sun & Lianyu Huang & Leilei Ding & Yuanmao Zhu & Jiwen Zhang & Dongdong Shen & Xianfeng Zhang & Zhenjiang Zhang & Tao Ren & Wan Wang & Fang Li & Xijun He & Zhigao Bu, 2023. "Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    4. Nathan D. Wolfe & Claire Panosian Dunavan & Jared Diamond, 2007. "Origins of major human infectious diseases," Nature, Nature, vol. 447(7142), pages 279-283, May.
    5. Neil M. Vora & Lee Hannah & Susan Lieberman & Mariana M. Vale & Raina K. Plowright & Aaron S. Bernstein, 2022. "Want to prevent pandemics? Stop spillovers," Nature, Nature, vol. 605(7910), pages 419-422, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel R. Friedman & Ashly E. Jordan & David C. Perlman & Georgios K. Nikolopoulos & Pedro Mateu-Gelabert, 2022. "Emerging Zoonotic Infections, Social Processes and Their Measurement and Enhanced Surveillance to Improve Zoonotic Epidemic Responses: A “Big Events” Perspective," IJERPH, MDPI, vol. 19(2), pages 1-11, January.
    2. repec:osf:socarx:vb5q3_v1 is not listed on IDEAS
    3. Bonnell, Tyler R. & Sengupta, Raja R. & Chapman, Colin A. & Goldberg, Tony L., 2010. "An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission," Ecological Modelling, Elsevier, vol. 221(20), pages 2491-2500.
    4. Romain Espinosa & Damian Tago & Nicolas Treich, 2020. "Infectious Diseases and Meat Production," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1019-1044, August.
    5. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    6. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    7. Hongfeng Li & Zheng Y. X. Huang & Jie Lan & Li Hu & Xuemin Wei & Yuhao Wang & Xiujun Li & Yang Li & Daniel J. Becker & Fuwen Wei & Yifei Xu, 2025. "Diversity and transmission and zoonotic potential of microbes in true insectivores," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Renata L. Muylaert & David A. Wilkinson & Tigga Kingston & Paolo D’Odorico & Maria Cristina Rulli & Nikolas Galli & Reju Sam John & Phillip Alviola & David T. S. Hayman, 2023. "Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Xinyuan Cui & Kewei Fan & Xianghui Liang & Wenjie Gong & Wu Chen & Biao He & Xiaoyuan Chen & Hai Wang & Xiao Wang & Ping Zhang & Xingbang Lu & Rujian Chen & Kaixiong Lin & Jiameng Liu & Junqiong Zhai , 2023. "Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Pueyo, Salvador, 2020. "Jevons' paradox and a tax on aviation to prevent the next pandemic," SocArXiv vb5q3, Center for Open Science.
    11. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    12. Heng Du & Lei Zhou & Zhen Liu & Yue Zhuo & Meilin Zhang & Qianqian Huang & Shiyu Lu & Kai Xing & Li Jiang & Jian-Feng Liu, 2024. "The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. World Bank, 2024. "Toward a One Health Approach in Sudan," World Bank Publications - Reports 41580, The World Bank Group.
    14. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    15. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    16. Bermudez, Bladimir Carrillo & Santos Branco, Danyelle Karine & Trujillo, Juan Carlos & de Lima, Joao Eustaquio, 2015. "Deforestation and Infant Health: Evidence from an Environmental Conservation Policy in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 229064, International Association of Agricultural Economists.
    17. Maxwell B Joseph & William E Stutz & Pieter T J Johnson, 2016. "Multilevel Models for the Distribution of Hosts and Symbionts," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    18. Laure Bonnaud & Nicolas Fortané, 2017. "Serge Morand and Muriel Figuié (eds), 2016, Emergence de maladies infectieuses. Risques et enjeux de société (The emergence of infectious diseases. Societal risks and stakes)," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 225-228, December.
    19. repec:plo:pmed00:1000272 is not listed on IDEAS
    20. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    21. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    22. Ricardo Aguas & Neil M Ferguson, 2013. "Feature Selection Methods for Identifying Genetic Determinants of Host Species in RNA Viruses," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64019-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.