IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63790-8.html
   My bibliography  Save this article

Unifying machine learning and interpolation theory via interpolating neural networks

Author

Listed:
  • Chanwook Park

    (Northwestern University
    LLC)

  • Sourav Saha

    (Virginia Polytechnic Institute and State University)

  • Jiachen Guo

    (LLC
    Northwestern University)

  • Hantao Zhang

    (Northwestern University)

  • Xiaoyu Xie

    (Northwestern University)

  • Miguel A. Bessa

    (Brown University)

  • Dong Qian

    (LLC
    University of Texas at Dallas)

  • Wei Chen

    (Northwestern University)

  • Gregory J. Wanger

    (Northwestern University)

  • Jian Cao

    (Northwestern University)

  • Thomas J. R. Hughes

    (University of Texas at Austin)

  • Wing Kam Liu

    (Northwestern University
    LLC)

Abstract

Computational science and engineering are shifting toward data-centric, optimization-based, and self-correcting solvers with artificial intelligence. This transition faces challenges such as low accuracy with sparse data, poor scalability, and high computational cost in complex system design. This work introduces Interpolating Neural Network (INN)-a network architecture blending interpolation theory and tensor decomposition. INN significantly reduces computational effort and memory requirements while maintaining high accuracy. Thus, it outperforms traditional partial differential equation (PDE) solvers, machine learning (ML) models, and physics-informed neural networks (PINNs). It also efficiently handles sparse data and enables dynamic updates of nonlinear activation. Demonstrated in metal additive manufacturing, INN rapidly constructs an accurate surrogate model of Laser Powder Bed Fusion (L-PBF) heat transfer simulation. It achieves sub-10-micrometer resolution for a 10 mm path in under 15 minutes on a single GPU, which is 5-8 orders of magnitude faster than competing ML models. This offers a new perspective for addressing challenges in computational science and engineering.

Suggested Citation

  • Chanwook Park & Sourav Saha & Jiachen Guo & Hantao Zhang & Xiaoyu Xie & Miguel A. Bessa & Dong Qian & Wei Chen & Gregory J. Wanger & Jian Cao & Thomas J. R. Hughes & Wing Kam Liu, 2025. "Unifying machine learning and interpolation theory via interpolating neural networks," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63790-8
    DOI: 10.1038/s41467-025-63790-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63790-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63790-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    2. Konstantinos Poulinakis & Dimitris Drikakis & Ioannis W. Kokkinakis & Stephen Michael Spottswood, 2023. "Machine-Learning Methods on Noisy and Sparse Data," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    3. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    4. Michael Moor & Oishi Banerjee & Zahra Shakeri Hossein Abad & Harlan M. Krumholz & Jure Leskovec & Eric J. Topol & Pranav Rajpurkar, 2023. "Foundation models for generalist medical artificial intelligence," Nature, Nature, vol. 616(7956), pages 259-265, April.
    5. Kate Crawford, 2024. "Generative AI’s environmental costs are soaring — and mostly secret," Nature, Nature, vol. 626(8000), pages 693-693, February.
    6. Zhang, Chi & Shafieezadeh, Abdollah, 2022. "Simulation-free reliability analysis with active learning and Physics-Informed Neural Network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Pruliere, E. & Chinesta, F. & Ammar, A., 2010. "On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 791-810.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    3. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    4. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    5. Namgil Lee & Jong-Min Kim, 2018. "Block tensor train decomposition for missing data estimation," Statistical Papers, Springer, vol. 59(4), pages 1283-1305, December.
    6. Zhang, Shuang & Han, Le, 2023. "Robust tensor recovery with nonconvex and nonsmooth regularization," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    7. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    8. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    9. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    10. Chen Ling & Gaohang Yu & Liqun Qi & Yanwei Xu, 2021. "T-product factorization method for internet traffic data completion with spatio-temporal regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 883-913, December.
    11. Zhang, Tonglin, 2020. "CP decomposition and weighted clique problem," Statistics & Probability Letters, Elsevier, vol. 161(C).
    12. Timmerman, Marieke E. & Kiers, Henk A. L., 2002. "Three-way component analysis with smoothness constraints," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 447-470, September.
    13. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.
    14. Andersson, Claus A. & Henrion, Rene, 1999. "A general algorithm for obtaining simple structure of core arrays in N-way PCA with application to fluorometric data," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 255-278, September.
    15. Alexander Rubinstein & Lev Slutskin, 2018. "«Multiway data analysis» and the general problem of journals’ ranking," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 50, pages 90-113.
    16. Carlos Martin-Barreiro & John A. Ramirez-Figueroa & Ana B. Nieto-Librero & Víctor Leiva & Ana Martin-Casado & M. Purificación Galindo-Villardón, 2021. "A New Algorithm for Computing Disjoint Orthogonal Components in the Three-Way Tucker Model," Mathematics, MDPI, vol. 9(3), pages 1-22, January.
    17. Giudici, Paolo & Huang, Bihong & Spelta, Alessandro, 2019. "Trade networks and economic fluctuations in Asian countries," Economic Systems, Elsevier, vol. 43(2), pages 1-1.
    18. Jacques Bénasséni & Mohammed Bennani Dosse, 2012. "Analyzing multiset data by the Power STATIS-ACT method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 49-65, April.
    19. Xuejuan Zhang & Jinling Zhao, 2025. "An extrapolation trust-region alternating least-squares algorithm for triple decomposition of third-order tensors," Annals of Operations Research, Springer, vol. 349(3), pages 1933-1955, June.
    20. Ji Yeh Choi & Heungsun Hwang & Marieke E. Timmerman, 2018. "Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63790-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.