Author
Listed:
- Mayar Ali
(Helmholtz Zentrum München
Helmholtz Zentrum München
Ludwig Maximilian University of Munich)
- Sabrina Richter
(Helmholtz Zentrum München
Technical University of Munich)
- Ali Ertürk
(Helmholtz Zentrum München
Ludwig-Maximilians-Universität LMU)
- David S. Fischer
(Helmholtz Zentrum München
Eric and Wendy Schmidt Center at the Broad Institute
Technical University of Munich)
- Fabian J. Theis
(Helmholtz Zentrum München
Technical University of Munich
Technical University of Munich)
Abstract
Tissue phenotypes, such as metabolic states, inflammation, and tumor properties, emerge from both molecular states and spatial cell organization. Spatial molecular assays provide an unbiased view of tissue architecture, enabling phenotype prediction. Graph neural networks (GNNs) offer a natural framework for analyzing spatial proteomics by integrating expression profiles with structure. We apply GNNs to classify tissue phenotypes using spatial cell patterns. We show that for relatively simple classification tasks, such as tumor grading in breast cancer, incorporating spatial context does not significantly improve predictive performance over models trained on single-cell or pseudobulk representations. However, GNNs capture meaningful spatial features, retaining prognostic signals beyond tumor labels, highlighting tumor-grade-specific cell type interactions, and uncovering complex immune infiltration patterns in colorectal cancer not detectable with traditional approaches. These findings suggest that while spatial dependencies may not always enhance classification performance in small datasets, GNNs remain valuable tools for characterizing tissue organization and interactions.
Suggested Citation
Mayar Ali & Sabrina Richter & Ali Ertürk & David S. Fischer & Fabian J. Theis, 2025.
"Graph neural networks learn emergent tissue properties from spatial molecular profiles,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63758-8
DOI: 10.1038/s41467-025-63758-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63758-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.