IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63649-y.html
   My bibliography  Save this article

Fully biocompatible, thermally drawn fiber supercapacitors for long-term bio-implantation

Author

Listed:
  • Sungha Jeon

    (Seoul National University
    Korea Advanced Institute of Science and Technology (KAIST))

  • Hyeonyeob Seo

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Yeji Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Youngin Choi

    (Hanyang University)

  • Youngbin Lee

    (Seoul National University)

  • Youngmin Jung

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Somin Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jung Tae Lee

    (Kyung Hee University)

  • Seongjun Park

    (Seoul National University
    Seoul National University
    Seoul National University
    Seoul National University)

Abstract

Recent advancements in implantable bioelectronic devices have increased the demand for biocompatible energy sources with long-term electrochemical and mechanical stability. Here, we present a tough hydrogel-based supercapacitor (THBS) fiber, fabricated via a thermal drawing process (TDP), that enables the integration of all components—electrodes, electrolyte, current collectors, and encapsulation—into a single, unified, and mechanically robust fiber-shaped architecture. Through thermal/mechanical optimization and the incorporation of self-healing properties, THBS fibers exhibit durable, high electrochemical performance under dynamic, high-curvature deformations mimicking in vivo physiological motions. Despite a thickness of only a few hundred microns, they maintain mechanical and electrochemical stability. Long-term functionality was confirmed over five weeks with minimal immune response. In vivo implantation demonstrated successful LED operation in a freely moving mouse, and successful optogenetic stimulation of both central and peripheral nervous systems. These results underscore the promise of THBS fibers as next-generation, fully biocompatible energy storage devices for advanced implantable bioelectronic systems.

Suggested Citation

  • Sungha Jeon & Hyeonyeob Seo & Yeji Kim & Youngin Choi & Youngbin Lee & Youngmin Jung & Somin Lee & Jung Tae Lee & Seongjun Park, 2025. "Fully biocompatible, thermally drawn fiber supercapacitors for long-term bio-implantation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63649-y
    DOI: 10.1038/s41467-025-63649-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63649-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63649-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeong-Yun Sun & Xuanhe Zhao & Widusha R. K. Illeperuma & Ovijit Chaudhuri & Kyu Hwan Oh & David J. Mooney & Joost J. Vlassak & Zhigang Suo, 2012. "Highly stretchable and tough hydrogels," Nature, Nature, vol. 489(7414), pages 133-136, September.
    2. Xiangya Wang & Meimei Yu & Mohammed Kamal Hadi & Jianzhou Niu & Yuxia Zhang & Qi Zhou & Fen Ran, 2024. "An anticoagulant supercapacitor for implantable applications," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fenghou Yuan & Huitang Qi & Binghui Song & Yuntian Cui & Junsheng Zhang & Huan Liu & Bo Liu & Hai Lei & Tian Liu, 2025. "Tailorable biosensors for real-time monitoring of stress distribution in soft biomaterials and living tissues," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Zonglei Wang & Yuli Wang & Jiawei Yang & Pengcheng Zhou & Wenqing Yan & Shihong Lin & Yujie Zhang & Qingyuan Sun & Yumiao Xu & Zichong Ji & Mingzhe Wang & Zongman Zhang & Junhong Yi & Meiqiong Zheng &, 2025. "Sub-400 nanometer-thick skin and environment adaptable organohydrogel nanofilm epidermal electrode," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Aruã Clayton Da Silva & Junzhi Wang & Ivan Rusev Minev, 2022. "Electro-assisted printing of soft hydrogels via controlled electrochemical reactions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Lili Liu & Ding Zhang & Peijia Bai & Yanjie Fang & Jiaqi Guo & Qi Li & Rujun Ma, 2025. "Fatigue-resistant and super-tough thermocells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Henri Savolainen & Negar Hosseiniyan & Mario Piedrahita-Bello & Olli Ikkala, 2025. "Bioinspired nondissipative mechanical energy storage and release in hydrogels via hierarchical sequentially swollen stretched chains," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    8. Peng Sun & Qi Wang & Jin Yang & Yulan Chen & Zhijian Wang & Shaoxing Qu & Costantino Creton & Rui Xiao, 2025. "Quantitative stress and damage mapping in multiple network elastomers using a single mechanophore," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Haoqing Yang & Tengxiao Liu & Lihua Jin & Yu Huang & Xiangfeng Duan & Hongtao Sun, 2024. "Tailoring smart hydrogels through manipulation of heterogeneous subdomains," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Minho Seong & Kahyun Sun & Somi Kim & Hyukjoo Kwon & Sang-Woo Lee & Sarath Chandra Veerla & Dong Kwan Kang & Jaeil Kim & Stalin Kondaveeti & Salah M. Tawfik & Hyung Wook Park & Hoon Eui Jeong, 2024. "Multifunctional Magnetic Muscles for Soft Robotics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Changshun Hou & Junjia Guo & Bonan Sun & Kai Fung Chan & Xin Song & Li Zhang, 2025. "Magnetic nanostickers for active control of interface-enhanced selective bioadhesion," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. S. M. Shatil Shahriar & Alec D. McCarthy & Syed Muntazir Andrabi & Yajuan Su & Navatha Shree Polavoram & Johnson V. John & Mitchell P. Matis & Wuqiang Zhu & Jingwei Xie, 2024. "Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Ming Yang & Lufang Wang & Wenliang Liu & Wenlong Li & Yewei Huang & Qiaofeng Jin & Li Zhang & Yuanwen Jiang & Zhiqiang Luo, 2024. "Highly-stable, injectable, conductive hydrogel for chronic neuromodulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Chen Xin & Zhongguo Ren & Leran Zhang & Liang Yang & Dawei Wang & Yanlei Hu & Jiawen Li & Jiaru Chu & Li Zhang & Dong Wu, 2023. "Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. David J. Lundberg & Christopher M. Brown & Eduard O. Bobylev & Nathan J. Oldenhuis & Yasmeen S. Alfaraj & Julia Zhao & Ilia Kevlishvili & Heather J. Kulik & Jeremiah A. Johnson, 2024. "Nested non-covalent interactions expand the functions of supramolecular polymer networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Xiaoxue Han & Chaimongkol Saengow & Leah Ju & Wen Ren & Randy H. Ewoldt & Joseph Irudayaraj, 2024. "Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Zhao Xu & Hong Chen & Huai-Bin Yang & Xin Yao & Haili Qin & Huai-Ping Cong & Shu-Hong Yu, 2025. "Hierarchically aligned heterogeneous core-sheath hydrogels," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Xueru Xiong & Yunhua Chen & Zhenxing Wang & Huan Liu & Mengqi Le & Caihong Lin & Gang Wu & Lin Wang & Xuetao Shi & Yong-Guang Jia & Yanli Zhao, 2023. "Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Shaoning Zhang & Dayong Ren & Qiaoyu Zhao & Min Peng & Xia Wang & Zhitao Zhang & Wei Liu & Fuqiang Huang, 2025. "Observation of topological hydrogen-bonding domains in physical hydrogel for excellent self-healing and elasticity," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63649-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.