IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63630-9.html
   My bibliography  Save this article

Electronically tailored metal-ion-chelation strategy promotes ionic liquid catalysis at near-ambient condition

Author

Listed:
  • Tianhao Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuan Tian

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chong Zhang

    (Chinese Academy of Sciences)

  • Tingting Yan

    (Chinese Academy of Sciences)

  • Hanwen Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Guoliang Zhang

    (Chinese Academy of Sciences)

  • Jie Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zengxi Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Gang Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Zhengzhou Institute of Emerging Industrial Technology)

  • Chunshan Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Suojiang Zhang

    (Chinese Academy of Sciences
    Zhengzhou Institute of Emerging Industrial Technology
    Henan University)

Abstract

Electronic properties of active sites profoundly influence catalytic production of value-added chemicals; however, rational description and modulation is still a significant challenge. Herein, we propose an effective metal-ion-chelation strategy guided by density functional theory prediction and in situ Raman observation to structurally tailor and quantitatively correlate the electronic properties of active sites in ionic liquid. Comprehensive characterizations and theoretical calculations, in combination with electronic properties–performance correlations, reveal the electronic peculiarity of nitrogen and oxygen centers can be controllably restructured for remarkable improvement of catalytic performance at near-ambient condition. The turnover frequency is increased by two folds with deactivation rate suppressed by more than one half, while the kilogram-scaled recycling pilot achieves similar performance for the probe methacrolein synthesis. This strategy further exhibits excellent applicability and tolerance in other substrates with representative functional groups. Our work expresses the significance of electronic properties and provides a valid regulation approach for ionic liquid catalysis.

Suggested Citation

  • Tianhao Zhang & Yuan Tian & Chong Zhang & Tingting Yan & Hanwen Yan & Guoliang Zhang & Jie Li & Zengxi Li & Gang Wang & Chunshan Li & Suojiang Zhang, 2025. "Electronically tailored metal-ion-chelation strategy promotes ionic liquid catalysis at near-ambient condition," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63630-9
    DOI: 10.1038/s41467-025-63630-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63630-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63630-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Israel Cano & Andreas Weilhard & Carmen Martin & Jose Pinto & Rhys W. Lodge & Ana R. Santos & Graham A. Rance & Elina Harriet Åhlgren & Erlendur Jónsson & Jun Yuan & Ziyou Y. Li & Peter Licence & Andr, 2021. "Blurring the boundary between homogenous and heterogeneous catalysis using palladium nanoclusters with dynamic surfaces," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. Ruochen Cao & Mei-Qi Zhang & Yuchen Jiao & Yuchen Li & Bo Sun & Dequan Xiao & Meng Wang & Ding Ma, 2023. "Co-upcycling of polyvinyl chloride and polyesters," Nature Sustainability, Nature, vol. 6(12), pages 1685-1692, December.
    3. Fengwang Li & Arnaud Thevenon & Alonso Rosas-Hernández & Ziyun Wang & Yilin Li & Christine M. Gabardo & Adnan Ozden & Cao Thang Dinh & Jun Li & Yuhang Wang & Jonathan P. Edwards & Yi Xu & Christopher , 2020. "Molecular tuning of CO2-to-ethylene conversion," Nature, Nature, vol. 577(7791), pages 509-513, January.
    4. Xiangjie Zhang & Tao Yan & Huaming Hou & Junqing Yin & Hongliu Wan & Xiaodong Sun & Qing Zhang & Fanfei Sun & Yao Wei & Mei Dong & Weibin Fan & Jianguo Wang & Yujie Sun & Xiong Zhou & Kai Wu & Yong Ya, 2024. "Regioselective hydroformylation of propene catalysed by rhodium-zeolite," Nature, Nature, vol. 629(8012), pages 597-602, May.
    5. Yang Liu & Jianhui Sun & Houhou Huang & Linlu Bai & Xiaomeng Zhao & Binhong Qu & Lunqiao Xiong & Fuquan Bai & Junwang Tang & Liqiang Jing, 2023. "Improving CO2 photoconversion with ionic liquid and Co single atoms," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huali Wu & Ji Li & Kun Qi & Yang Zhang & Eddy Petit & Wensen Wang & Valérie Flaud & Nicolas Onofrio & Bertrand Rebiere & Lingqi Huang & Chrystelle Salameh & Luc Lajaunie & Philippe Miele & Damien Voir, 2021. "Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Yangbo Ma & Liang Guo & Liang Chang & Weihua Guo & Tao Zhou & Fengkun Hao & Wenda Su & Jingwen Zhou & Guozhi Wang & Mingzheng Shao & Jihan Yu & Jinwen Yin & Yunhao Wang & Fu Liu & An Zhang & Kun Qian , 2025. "Unconventional phase metal heteronanostructures with tunable exposed interface for efficient tandem nitrate electroreduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ya Wang & Jian-Xin Wei & Hong-Liang Tang & Lu-Hua Shao & Long-Zhang Dong & Xiao-Yu Chu & Yan-Xia Jiang & Gui-Ling Zhang & Feng-Ming Zhang & Ya-Qian Lan, 2024. "Artificial photosynthetic system for diluted CO2 reduction in gas-solid phase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Linbo Li & Xin Lei & Zhilong Zheng & Yingjun Dong & Haohui Chen & Jun Chen & Yi Zhong & Yongping Zheng & Yongbing Tang & Xiaolong Zhang & Hui-Ming Cheng, 2025. "Tuning binding strength between single metal atoms and supports enhances electrochemical CO2 methanation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Yan Shen & Nan Fang & Xinru Liu & Yu Ling & Yuming Su & Tian Tan & Feng Chen & He Lin & Boxuan Zhao & Jin Wang & Duanhui Si & Shunji Xie & Ye Wang & Da Zhou & Teng Zhang & Rong Cao & Cheng Wang, 2025. "Observation of metal-organic interphase in Cu-based electrochemical CO2-to-ethanol conversion," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    7. Yan Lin & Tuo Wang & Lili Zhang & Gong Zhang & Lulu Li & Qingfeng Chang & Zifan Pang & Hui Gao & Kai Huang & Peng Zhang & Zhi-Jian Zhao & Chunlei Pei & Jinlong Gong, 2023. "Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Xiaoxia Chang & Sudarshan Vijay & Yaran Zhao & Nicholas J. Oliveira & Karen Chan & Bingjun Xu, 2022. "Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Shun Zhang & Wenhao Xu & Rongcheng Du & Lei Yan & Xuehui Liu & Shimei Xu & Yu-Zhong Wang, 2024. "Internal water circulation mediated synergistic co-hydrolysis of PET/cotton textile blends in gamma-valerolactone," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yao Chai & Yuehua Kong & Min Lin & Wei Lin & Jinni Shen & Jinlin Long & Rusheng Yuan & Wenxin Dai & Xuxu Wang & Zizhong Zhang, 2023. "Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Hao Wang & Gui-Lin Zhuang & Yingjie Fan & Hua-Qing Yin & Wei Zhang & Zhe Wu & Shuang Yao & Tong-Bu Lu & Wenbin Lin & Zhi-Ming Zhang, 2025. "Steering artificial photosynthesis via photoinduced conversion of monometallic to bimetallic sites in FeCo nitroprussides," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Yufei Cao & Zhu Chen & Peihao Li & Adnan Ozden & Pengfei Ou & Weiyan Ni & Jehad Abed & Erfan Shirzadi & Jinqiang Zhang & David Sinton & Jun Ge & Edward H. Sargent, 2023. "Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Shoujie Li & Wei Chen & Xiao Dong & Chang Zhu & Aohui Chen & Yanfang Song & Guihua Li & Wei Wei & Yuhan Sun, 2022. "Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Ke Xie & Rui Kai Miao & Adnan Ozden & Shijie Liu & Zhu Chen & Cao-Thang Dinh & Jianan Erick Huang & Qiucheng Xu & Christine M. Gabardo & Geonhui Lee & Jonathan P. Edwards & Colin P. O’Brien & Shannon , 2022. "Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Meng Wang & Bingqing Wang & Jiguang Zhang & Shibo Xi & Ning Ling & Ziyu Mi & Qin Yang & Mingsheng Zhang & Wan Ru Leow & Jia Zhang & Yanwei Lum, 2024. "Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Xingbao Chen & Ruihu Lu & Chengbo Li & Wen Luo & Ruohan Yu & Jiexin Zhu & Lei Lv & Yuhang Dai & Shanhe Gong & Yazhou Zhou & Weiwei Xiong & Jiahao Wu & Hongwei Cai & Xinfei Wu & Zhaohui Deng & Boyu Xin, 2025. "Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Jie Ding & Fuhua Li & Xinyi Ren & Yuhang Liu & Yifan Li & Zheng Shen & Tian Wang & Weijue Wang & Yang-Gang Wang & Yi Cui & Hongbin Yang & Tianyu Zhang & Bin Liu, 2024. "Molecular tuning boosts asymmetric C-C coupling for CO conversion to acetate," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Jian Cheng & Ling Chen & Yanzhi Zhang & Min Wang & Zhangyi Zheng & Lin Jiang & Zhao Deng & Zhihe Wei & Mutian Ma & Likun Xiong & Wei Hua & Daqi Song & Wenxuan Huo & Yuebin Lian & Wenjun Yang & Fenglei, 2025. "Metal-organic double layer to stabilize selective multi-carbon electrosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63630-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.