IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63623-8.html
   My bibliography  Save this article

A magneto-responsive nanomesh biosensor for simultaneous mechanical stimulation and electrochemical detection

Author

Listed:
  • Kai-Qi Jin

    (Wuhan University)

  • Tian-Cai Sun

    (Wuhan University)

  • Zi-Xing Zhou

    (Wuhan University)

  • Jing-Du Li

    (Wuhan University)

  • Yi Zhao

    (Wuhan University)

  • Wen-Ting Fan

    (Core Facility of Wuhan University)

  • Jing Yan

    (Wuhan University)

  • Guo-You Huang

    (Wuhan University)

  • Wei-Hua Huang

    (Wuhan University)

  • Yan-Ling Liu

    (Wuhan University)

Abstract

Mechanical cues are critical regulators of cell fate and behavior through the orchestrated and continual conversion of physical forces into biochemical responses. However, due to the poor compatibility between mechanical and biochemical techniques, existing methods are often limited in characterizing the occurring biochemical signals during mechanical stimulation. Herein, this work presents a magneto-responsive nanomesh (MRnM) biosensor capable of mechanically stimulating cells in vitro and tissues in vivo and simultaneously detecting the triggered biomolecules. Under external magnetic fields, the sensor exhibits excellent magnetic responsiveness with remote, controllable and tailored deformation, while maintaining prominent and stable electrochemical sensing performance. As a proof of concept, this MRnM sensor achieves the magnetically-actuated deformation of osteoblasts and real-time monitoring of the ensuing nitric oxide release, revealing the role of Piezo1 channels in nitric oxide synthase signaling pathways. Furthermore, we demonstrate the capability of MRnM sensor for in vivo applications. Ultimately, the developed MRnM biosensor holds great potential for mechanical stimulation and real-time monitoring of various biological systems, ranging from living cells to soft tissues and in vivo organs.

Suggested Citation

  • Kai-Qi Jin & Tian-Cai Sun & Zi-Xing Zhou & Jing-Du Li & Yi Zhao & Wen-Ting Fan & Jing Yan & Guo-You Huang & Wei-Hua Huang & Yan-Ling Liu, 2025. "A magneto-responsive nanomesh biosensor for simultaneous mechanical stimulation and electrochemical detection," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63623-8
    DOI: 10.1038/s41467-025-63623-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63623-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63623-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinxing Li & Yuxin Liu & Lei Yuan & Baibing Zhang & Estelle Spear Bishop & Kecheng Wang & Jing Tang & Yu-Qing Zheng & Wenhui Xu & Simiao Niu & Levent Beker & Thomas L. Li & Gan Chen & Modupeola Diyaol, 2022. "A tissue-like neurotransmitter sensor for the brain and gut," Nature, Nature, vol. 606(7912), pages 94-101, June.
    2. Daan Vorselen & Yifan Wang & Miguel M. de Jesus & Pavak K. Shah & Matthew J. Footer & Morgan Huse & Wei Cai & Julie A. Theriot, 2020. "Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Yijun Zheng & Mitchell K. L. Han & Renping Zhao & Johanna Blass & Jingnan Zhang & Dennis W. Zhou & Jean-Rémy Colard-Itté & Damien Dattler & Arzu Çolak & Markus Hoth & Andrés J. García & Bin Qu & Rolan, 2021. "Optoregulated force application to cellular receptors using molecular motors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Jonathan Rivnay & Sahika Inal & Brian A. Collins & Michele Sessolo & Eleni Stavrinidou & Xenofon Strakosas & Christopher Tassone & Dean M. Delongchamp & George G. Malliaras, 2016. "Structural control of mixed ionic and electronic transport in conducting polymers," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    5. Sorosh Amiri & Camelia Muresan & Xingbo Shang & Clotilde Huet-Calderwood & Martin A. Schwartz & David A. Calderwood & Michael Murrell, 2023. "Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Boufidis & Raghav Garg & Eugenia Angelopoulos & D. Kacy Cullen & Flavia Vitale, 2025. "Bio-inspired electronics: Soft, biohybrid, and “living” neural interfaces," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Tong Li & Zhidong Wei & Fei Jin & Yongjiu Yuan & Weiying Zheng & Lili Qian & Hongbo Wang & Lisha Hua & Juan Ma & Huanhuan Zhang & Huaduo Gu & Michael G. Irwin & Ting Wang & Steven Wang & Zuankai Wang , 2023. "Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Martin Hjort & Abdelrazek H. Mousa & David Bliman & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Fredrik Ek & Roger Olsson, 2023. "In situ assembly of bioresorbable organic bioelectronics in the brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Zhouheng Wang & Nanlin Shi & Yingchao Zhang & Ning Zheng & Haicheng Li & Yang Jiao & Jiahui Cheng & Yutong Wang & Xiaoqing Zhang & Ying Chen & Yihao Chen & Heling Wang & Tao Xie & Yijun Wang & Yinji M, 2023. "Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Tian Li & Haobo Qi & Cancan Zhao & Zhenming Li & Wei Zhou & Guanjin Li & Hao Zhuo & Wei Zhai, 2025. "Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    7. Xianchi Zhou & Zhouyu Lu & Wenzhong Cao & Zihao Zhu & Yifeng Chen & Yanwen Ni & Zuolong Liu & Fan Jia & Yang Ye & Haijie Han & Ke Yao & Weifeng Liu & Youxiang Wang & Jian Ji & Peng Zhang, 2024. "Immunocompatible elastomer with increased resistance to the foreign body response," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Chaoyi Yan & Lanyi Xiang & Yu Xiao & Xuefeng Zhang & Ziling Jiang & Boya Zhang & Chenyang Li & Siyu Di & Fengjiao Zhang, 2024. "Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. In Seong Lee & Michael Filatov & Seung Kyu Min, 2025. "Dynamics of a light-driven molecular rotary motor in an optical cavity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    10. Sizhe Huang & Xinyue Liu & Shaoting Lin & Christopher Glynn & Kayla Felix & Atharva Sahasrabudhe & Collin Maley & Jingyi Xu & Weixuan Chen & Eunji Hong & Alfred J. Crosby & Qianbin Wang & Siyuan Rao, 2024. "Control of polymers’ amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Xiaolei Yu & Vincent Mukwaya & Li Wang & Weili Zhao & Stephen Mann & Hongjing Dou, 2025. "Mechano-crosstalk between living and artificial cells," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    12. Ji Hwan Kim & Roman Halaksa & Il-Young Jo & Hyungju Ahn & Peter A. Gilhooly-Finn & Inho Lee & Sungjun Park & Christian B. Nielsen & Myung-Han Yoon, 2023. "Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Xinjian Xie & Zhonggang Xu & Xin Yu & Hong Jiang & Hongjiao Li & Wenqian Feng, 2023. "Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Fabrizio A. Pennacchio & Alessandro Poli & Francesca Michela Pramotton & Stefania Lavore & Ilaria Rancati & Mario Cinquanta & Daan Vorselen & Elisabetta Prina & Orso Maria Romano & Aldo Ferrari & Matt, 2024. "N2FXm, a method for joint nuclear and cytoplasmic volume measurements, unravels the osmo-mechanical regulation of nuclear volume in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Xiao Zhao & Jiahao Huang & Juncheng Zhang & Bowen Yang & Zijuan Hu & Ting Li & Xiang Ma & Chunyan Jiang & Haochen Zou & Songrui Liu & Qiusui He & Lixing Weng & Ting Wang & Lianhui Wang, 2025. "Soft bioelectronics embedded with self-confined tetrahedral DNA circuit for high-fidelity chronic wound monitoring," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Dong-Hu Kim & Zico Alaia Akbar & Yoga Trianzar Malik & Ju-Won Jeon & Sung-Yeon Jang, 2023. "Self-healable polymer complex with a giant ionic thermoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Xiankui Xu & Dawei Xu & Shen Lu & Xue Zhou & Shenbo Yang & Zhonghai Zhang, 2024. "Atomically dispersed recognition unit for selective in vivo photoelectrochemical medicine detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Shiting Gu & Dawei Xu & Jing Huang & Xue Zhou & Yibin Liu & Zhonghai Zhang, 2025. "Photoelectrochemical biosensor with single atom sites for norepinephrine sensing and brain region synergy in epilepsy," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    19. Bo Fang & Jianmin Yan & Dan Chang & Jinli Piao & Kit Ming Ma & Qiao Gu & Ping Gao & Yang Chai & Xiaoming Tao, 2022. "Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Kamila Janzakova & Ankush Kumar & Mahdi Ghazal & Anna Susloparova & Yannick Coffinier & Fabien Alibart & Sébastien Pecqueur, 2021. "Analog programing of conducting-polymer dendritic interconnections and control of their morphology," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63623-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.