IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63576-y.html
   My bibliography  Save this article

A biopiezocatalyst harnessing mechanical energy to enhance bioplastic production from CO2 and organic carbon

Author

Listed:
  • Pier-Luc Tremblay

    (Wuhan University of Technology
    Wuhan University of Technology
    Wuhan University of Technology)

  • Mengying Xu

    (Wuhan University of Technology)

  • Muhammad Babur Joya

    (Wuhan University of Technology)

  • Yujie Wang

    (Wuhan University of Technology)

  • Chun He

    (Wuhan University of Technology)

  • Ziqiu Li

    (Wuhan University of Technology)

  • Lian Li

    (Wuhan University of Technology
    Wuhan University of Technology)

  • Kai Xu

    (Wuhan University of Technology)

  • Yujie Feng

    (Harbin Institute of Technology)

  • Tian Zhang

    (Wuhan University of Technology
    Wuhan University of Technology
    Wuhan University of Technology)

Abstract

The sustainable bioproduction of chemicals from CO2 remains far from reaching its full potential. The productivity of autotrophic bioprocesses could benefit from harnessing ubiquitous mechanical energy sources, which are inaccessible for energizing bioproduction systems to this day. In this work, we develop a hybrid system where the efficient piezocatalyst zinc oxide (ZnO) harnesses mechanical vibration to stimulate the growth of the chemolithoautotrophic bacterium Cupriavidus necator and its production of the bioplastic polyhydroxybutyrate (PHB) from CO2. Both ultrasonication and intense wave-like motion at least triple autotrophic PHB production with ZnO forming a cohesive aggregate with C. necator and transferring charges to its respiratory metabolism. The same ZnO-C.necator system doubles heterotrophic PHB synthesis from fructose, highlighting its extensive potential for multiple biosynthesis applications. The hybrid approach reported here provides a blueprint route for powering bioproduction from CO2 or other substrates with widespread mechanical energy such as industrial vibrations and natural waves.

Suggested Citation

  • Pier-Luc Tremblay & Mengying Xu & Muhammad Babur Joya & Yujie Wang & Chun He & Ziqiu Li & Lian Li & Kai Xu & Yujie Feng & Tian Zhang, 2025. "A biopiezocatalyst harnessing mechanical energy to enhance bioplastic production from CO2 and organic carbon," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63576-y
    DOI: 10.1038/s41467-025-63576-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63576-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63576-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Ye & Chao Wang & Chao Gao & Tao Fu & Chaohui Yang & Guoping Ren & Jian Lü & Shungui Zhou & Yujie Xiong, 2022. "Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Rial, Rafael Cardoso, 2024. "Biofuels versus climate change: Exploring potentials and challenges in the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    3. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 636(8042), pages 4-4, December.
    4. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Nilmani Singh & Stephan Lane & Tianhao Yu & Jingxia Lu & Adrianna Ramos & Haiyang Cui & Huimin Zhao, 2025. "A generalized platform for artificial intelligence-powered autonomous enzyme engineering," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Sisira Mambram Kunnath & Elad Arad & Ran Zalk & Itamar Kass & Anat Shahar & Albert Batushansky & Hanna Rapaport & Raz Jelinek, 2025. "Allosteric amyloid catalysis by coiled coil fibrils," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Jinhao Que & Guangfu Xue & Tao Wang & Xiyun Jin & Zuxiang Wang & Yideng Cai & Wenyi Yang & Meng Luo & Qian Ding & Jinwei Zhang & Yilin Wang & Yuexin Yang & Fenglan Pang & Yi Hui & Zheng Wei & Jun Xion, 2025. "Identifying T cell antigen at the atomic level with graph convolutional network," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    7. Camille N. Lambert & Vaitea Opuu & Francesco Calvanese & Polina Pavlinova & Francesco Zamponi & Eric J. Hayden & Martin Weigt & Matteo Smerlak & Philippe Nghe, 2025. "Exploring the space of self-reproducing ribozymes using generative models," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Sara Basse Hansen & Sergio G. Bartual & Huijie Yuan & Olawale G. Raimi & Andrii Gorelik & Andrew T. Ferenbach & Kristian Lytje & Jan Skov Pedersen & Taner Drace & Thomas Boesen & Daan M. F. Aalten, 2025. "Multi-domain O-GlcNAcase structures reveal allosteric regulatory mechanisms," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Chongbing Liao & Qihui Liu & Gan Luo & Yinyue Luo & Dan Yao & Qingxia Wang & Jue Zhang & Yang Wu & Jialin Jin & Dan Xu & Wuyuan Lu, 2025. "Human neutrophil α-defensin HNP1 interacts with bacterial OmpA to promote Acinetobacter baumannii biofilm formation," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    10. Jianping Kong & Wanqian Wu & Shiyue Ke & Zihan Zhou & Shenglan Xia & Jianyu Chen & Runyu Zhu & Yijia Hou & Tinashe Makanyire & Xiangru Shan & Zhuyue Zhuo & Keying Li & Hongtao Shen & Pan Yang & Pingpi, 2025. "Molecular mechanisms of CBASS phospholipase effector CapV mediated membrane disruption," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Julian O. Streit & Sammy H. S. Chan & Saifu Daya & John Christodoulou, 2025. "Rational design of 19F NMR labelling sites to probe protein structure and interactions," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Max S. Kloet & Chatrin Chatrin & Rishov Mukhopadhyay & Bianca D. M. van Tol & Rebecca Smith & Sarah A. Rotman & Rayman T. N. Tjokrodirijo & Kang Zhu & Andrii Gorelik & Lucy Maginn & Paul R. Elliott & , 2025. "Identification of RNF114 as ADPr-Ub reader through non-hydrolysable ubiquitinated ADP-ribose," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    13. FNU Vidya & Youran Luo & Hongwei Wu & Wilfred A. Donk & Andrew C. McShan & Vinayak Agarwal, 2025. "Large protein-like leader peptides engage differently with RiPP halogenases and lanthionine synthetases," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Shuyi Zeng & Xingyu Xiong & Houfang Long & Qianhui Xu & Yifan Yu & Bo Sun & Cong Liu & Zhizhi Wang & Wenqing Xu & Shengnan Zhang & Dan Li, 2025. "Design of Ig-like binders targeting α-synuclein fibril for mitigating its pathological activities," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Yu Zhang & Tingting Zhang & Xue Xiao & Yejun Wang & Adam Kawalek & Jinzhao Ou & Anmin Ren & Wenhao Sun & Vincent Bakker & Yujie Liu & Yuelong Li & Liang Yang & Liang Ye & Ning Jia & Jan-Willem Veening, 2025. "CRISPRi screen identifies FprB as a synergistic target for gallium therapy in Pseudomonas aeruginosa," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    16. Dhana G. Gorasia & Eric Hanssen & Manasi Mudaliyar & Craig J. Morton & Sepideh Valimehr & Christine Seers & Lianyi Zhang & Matthew T. Doyle & Debnath Ghosal & Paul D. Veith & Eric C. Reynolds, 2025. "Insights into type IX secretion from PorKN cogwheel structure bound to PorG and attachment complexes," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Michal Beffinger & Linda Schellhammer & Betül Taskoparan & Sereina Deplazes & Ulisse Salazar & Nazanin Tatari & Frauke Seehusen & Leopold Balthazar & Carl Philipp Zinner & Sabine Spath & Tala Shekaria, 2025. "FcRn-silencing of IL-12Fc prevents toxicity of local IL-12 therapy and prolongs survival in experimental glioblastoma," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    18. Xiaorong Li & Xiaoxu Yang & Xiaoli Lu & Bingqian Lin & Yuanyuan Zhang & Bangdong Huang & Yutong Zhou & Jing Huang & Kun Wu & Qiang Zhou & Ximin Chi, 2025. "Structural basis for substrate recognition mechanism of human SLC26A7," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. William J. Nicolas & Anna Shiriaeva & Michael W. Martynowycz & Angus C. Grey & Yasmeen N. Ruma & Paul J. Donaldson & Tamir Gonen, 2025. "Structure of the lens MP20 mediated adhesive junction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    20. Ai Tamura & Kazuyuki Yamagata & Takashi Kono & Masanori Fujimoto & Takahiro Fuchigami & Motoi Nishimura & Masataka Yokoyama & Akitoshi Nakayama & Naoko Hashimoto & Ikki Sakuma & Nobuyuki Mitsukawa & Y, 2025. "p53-inducible lncRNA LOC644656 causes genotoxic stress-induced stem cell maldifferentiation and cancer chemoresistance," Nature Communications, Nature, vol. 16(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63576-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.