IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63574-0.html
   My bibliography  Save this article

An electrically controlled single-molecule spin switch

Author

Listed:
  • Wantong Huang

    (Karlsruhe Institute of Technology)

  • Kwan Ho Au-Yeung

    (Karlsruhe Institute of Technology
    Karlsruhe Institute of Technology)

  • Paul Greule

    (Karlsruhe Institute of Technology)

  • Máté Stark

    (Karlsruhe Institute of Technology)

  • Christoph Sürgers

    (Karlsruhe Institute of Technology)

  • Wolfgang Wernsdorfer

    (Karlsruhe Institute of Technology
    Institute for Quantum Materials and Technologies)

  • Roberto Robles

    (Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU))

  • Nicolas Lorente

    (Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)
    Donostia International Physics Center)

  • Philip Willke

    (Karlsruhe Institute of Technology
    Karlsruhe Institute of Technology)

Abstract

Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed. In this study, we present an electrically controlled single-molecule spin switch based on a bistable complex adsorbed on an insulating magnesium oxide film. The complex, which consists of an Fe adatom coupled to an iron phthalocyanine (FePc) molecule, can be reversibly switched between two stable states using bias voltage pulses locally via the tip of a scanning tunnelling microscope. Inelastic electron tunnelling spectroscopy measurements and density functional theory calculations reveal a distinct change between a paramagnetic and a non-magnetic spin configuration. Lastly, we demonstrate the functionality of this molecular spin switch by using it to modify the electron spin resonance frequency of a nearby target FePc spin within a spin-spin coupled structure. Thus, we showcase how individual molecular machines can be utilized to create scalable and tunable quantum devices.

Suggested Citation

  • Wantong Huang & Kwan Ho Au-Yeung & Paul Greule & Máté Stark & Christoph Sürgers & Wolfgang Wernsdorfer & Roberto Robles & Nicolas Lorente & Philip Willke, 2025. "An electrically controlled single-molecule spin switch," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63574-0
    DOI: 10.1038/s41467-025-63574-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63574-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63574-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grant J. Simpson & Víctor García-López & A. Daniel Boese & James M. Tour & Leonhard Grill, 2019. "How to control single-molecule rotation," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    2. Lukas Gerhard & Kevin Edelmann & Jan Homberg & Michal Valášek & Safa G. Bahoosh & Maya Lukas & Fabian Pauly & Marcel Mayor & Wulf Wulfhekel, 2017. "An electrically actuated molecular toggle switch," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    3. Fabian D. Natterer & Kai Yang & William Paul & Philip Willke & Taeyoung Choi & Thomas Greber & Andreas J. Heinrich & Christopher P. Lutz, 2017. "Reading and writing single-atom magnets," Nature, Nature, vol. 543(7644), pages 226-228, March.
    4. Wantong Huang & Máté Stark & Paul Greule & Kwan Ho Au-Yeung & Daria Sostina & José Reina Gálvez & Christoph Sürgers & Wolfgang Wernsdorfer & Christoph Wolf & Philip Willke, 2025. "Quantum spin-engineering in on-surface molecular ferrimagnets," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    5. Jesús Ferrando-Soria & Eufemio Moreno Pineda & Alessandro Chiesa & Antonio Fernandez & Samantha A. Magee & Stefano Carretta & Paolo Santini & Iñigo J. Vitorica-Yrezabal & Floriana Tuna & Grigore A. Ti, 2016. "A modular design of molecular qubits to implement universal quantum gates," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. E. Garlatti & A. Albino & S. Chicco & V. H. A. Nguyen & F. Santanni & L. Paolasini & C. Mazzoli & R. Caciuffo & F. Totti & P. Santini & R. Sessoli & A. Lunghi & S. Carretta, 2023. "The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Feng Wang & Wangqiang Shen & Yuan Shui & Jun Chen & Huaiqiang Wang & Rui Wang & Yuyuan Qin & Xuefeng Wang & Jianguo Wan & Minhao Zhang & Xing Lu & Tao Yang & Fengqi Song, 2024. "Electrically controlled nonvolatile switching of single-atom magnetism in a Dy@C84 single-molecule transistor," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Youngwook Park & Ikutaro Hamada & Adnan Hammud & Takashi Kumagai & Martin Wolf & Akitoshi Shiotari, 2024. "Atomic-precision control of plasmon-induced single-molecule switching in a metal–semiconductor nanojunction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Stefano Reale & Jiyoon Hwang & Jeongmin Oh & Harald Brune & Andreas J. Heinrich & Fabio Donati & Yujeong Bae, 2024. "Electrically driven spin resonance of 4f electrons in a single atom on a surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Amelia Domínguez-Celorrio & Leonard Edens & Sofía Sanz & Manuel Vilas-Varela & Jose Martinez-Castro & Diego Peña & Véronique Langlais & Thomas Frederiksen & José I. Pascual & David Serrate, 2025. "Systematic modulation of charge and spin in graphene nanoribbons on MgO," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    7. Vibhuti Rai & Nico Balzer & Gabriel Derenbach & Christof Holzer & Marcel Mayor & Wulf Wulfhekel & Lukas Gerhard & Michal Valášek, 2023. "Hot luminescence from single-molecule chromophores electrically and mechanically self-decoupled by tripodal scaffolds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63574-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.