Author
Abstract
Modern reconnaissance technologies, including hyperspectral and multispectral intensity imaging across optical, thermal infrared, terahertz, and microwave bands, can detect the shape, material composition, and temperature of targets. Consequently, developing a camouflage technique that seamlessly integrates both spatial and spectral dimensions across all key atmospheric windows to outsmart advanced surveillance has yet to be effectively developed and remains a significant challenge. In this study, we propose a digital camouflage strategy that covers the optical (0.4-2.5 μm) hyperspectra and thermal infrared-terahertz-microwave (thermal IR (MWIR and LWIR)/THz/MW) tri-bands, encompassing over 80% of atmospheric windows. In the optical band, the hyperspectral digital camouflage can simulate various vegetational spectra as primary colors, with deviation rate less than 0.2 (can be regarded as the same type of plant). In the tri-bands, it also produces multilevel intensity digital camouflage within each band. The average structural similarity among multiple digital camouflage patterns is approximately 0.52, which is favorable for multispectral pattern-background matching. This work introduces a new paradigm in ultra-broadband electromagnetic wave manipulation by combining hyper/multi-spectra and spatial distribution, offering deeper insights into imaging, image processing, and information encryption technologies.
Suggested Citation
Rongxuan Zhu & Huanzheng Zhu & Bing Qin & Wenzhe Yao & Meng Zhao & Neng Yu & Zixian Su & Lijuan Xie & Hongbin Ma & Jiangtao Huangfu & Pintu Ghosh & Min Qiu & Qiang Li, 2025.
"Digital camouflage encompassing optical hyperspectra and thermal infrared-terahertz-microwave tri-bands,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63563-3
DOI: 10.1038/s41467-025-63563-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63563-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.