Author
Listed:
- Yuan Yu
(Harbin Institute of Technology)
- Baoli Wu
(North China Municipal Engineering Design and Research Institute Corporation Limited)
- Rui Wei
(Harbin Institute of Technology)
- Nanqi Ren
(Harbin Institute of Technology)
- Shijie You
(Harbin Institute of Technology)
Abstract
Reactive transport in porous media is the key to heterogeneous catalysis, which is the central process in both natural and engineered systems. Elucidating nexus between porous architecture and reactive transport is of importance, but remains a challenge. Conventional text-based approach relies on quantitative structural features (QSFs; porosity, tortuosity, and connectivity), which fails to identify key reaction regions and predict local reaction rate for anisotropic architecture due to isotropic assumption. To address these issues, this study reports a data-driven deep learning computer vision (DLCV) method for visualizing nexus between porous architecture and reactive transport in heterogeneous catalysis. Here, we show that the 3D local reaction rate can be inferred from 2D lateral images of anisotropic porous catalysts using Conditional Generative Adversarial Network and feature representation transfer learning (cGAN-FRT). Efficiency and generalizability are validated by rapid and accurate prediction of reaction rate for heterogeneous electrocatalysis. Based on feature importance generated by cGAN-FRT, pore throat, curved flow channel, and their combined structures are identified to be the dominant factors that affect nonlinear variation of porous reactive transport, which can be interpreted by physical field synergy. This study realizes visualizing nexus between anisotropic porous architecture and local reactive transport powered by artificial intelligence.
Suggested Citation
Yuan Yu & Baoli Wu & Rui Wei & Nanqi Ren & Shijie You, 2025.
"Visualizing nexus of porous architecture and reactive transport in heterogeneous catalysis by deep learning computer vision and transfer learning,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63481-4
DOI: 10.1038/s41467-025-63481-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63481-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.