Author
Abstract
Developing safe and high-voltage solid-state polymer electrolytes for high-specific-energy lithium metal batteries holds great promise. However, low ionic conductivity, limited Li+ transference number, narrow voltage window, and high flammability greatly hinder their practical applications. Herein, we propose a puzzle-like molecular assembly strategy to construct a solid-state polymer electrolyte via in situ polymerization. The triallyl phosphate and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate segments are spliced into the vinyl ethylene carbonate matrix to enhance anion affinity and promote lithium salt dissociation, resulting in a high ionic conductivity of 0.432 mS cm-1 and a Li+ transference number of 0.70 at 25 °C. Meanwhile, the polymer electrolyte exhibits a high oxidation voltage of 5.15 V, enabled by its intrinsic high-voltage tolerance and the formation of a robust inorganic-rich interphase. As a result, the Li||LiNi0.6Co0.2Mn0.2O2 cell maintains stable performance for 300 cycles and reliably cycles even with an application-oriented mass loading of 15.8 mg cm-2. The 2.6-Ah Li||LiNi0.8Co0.1Mn0.1O2 pouch cell reaches a high specific energy of 349 Wh kg-1. Furthermore, the developed polymer electrolyte displays superior nonflammability and the Li||LiFePO4 cell exhibits stable cycling for over 120 cycles at 100 °C. Both accelerating rate calorimetry and nail penetration tests verify the high safety of the pouch cells using the designed polymer electrolyte, showing the potential for practical applications.
Suggested Citation
Junjie Chen & Changxiang He & Xudong Peng & Jin Li & Xiaosa Xu & Yin Zhou & Jiadong Shen & Jing Sun & Yiju Li & Tianshou Zhao, 2025.
"Puzzle-like molecular assembly of non-flammable solid-state polymer electrolytes for safe and high-voltage lithium metal batteries,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63439-6
DOI: 10.1038/s41467-025-63439-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63439-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.