Author
Listed:
- Kay E. Linker
(University of California, Los Angeles
University of California, Los Angeles
RefinedScience)
- Violeta Duran-Laforet
(University of Massachusetts Chan Medical School)
- Matthias Ollivier
(University of California, Los Angeles)
- Xinzhu Yu
(University of California, Los Angeles
University of Texas Health Science Center at Houston)
- Dorothy P. Schafer
(University of Massachusetts Chan Medical School)
- Baljit S. Khakh
(University of California, Los Angeles
University of California, Los Angeles)
Abstract
Aging affects multiple organs and within the brain drives distinct molecular changes across different cell types. The striatum encodes motor behaviors that decline with age, but our understanding of how cells within the striatum change remains incomplete. Using single-cell RNA sequencing from young and aged mice we identify molecularly distinct astrocyte subtypes. We show that astrocytes change significantly with age, exhibiting downregulation of genes, reduced diversity, and a shift to more homogenous inflammatory transcriptomic profiles. By exploring where striatal astrocyte subtypes are located with single-cell resolution, we map astrocytes enriched in dorsal, medial, and ventral striatum. Age increases inflammatory marker transcripts in dorsal striatal astrocytes, which display greater age-related changes than ventral striatal astrocytes. We impute molecular interactions between astrocytes and neurons and find that age particularly reduced interactions related to Nrxn2. Our data show that aging alters regionally enriched striatal astrocytes asymmetrically, with dorsal striatal astrocytes exhibiting greater age-related molecular changes.
Suggested Citation
Kay E. Linker & Violeta Duran-Laforet & Matthias Ollivier & Xinzhu Yu & Dorothy P. Schafer & Baljit S. Khakh, 2025.
"Aging in mice alters regionally enriched striatal astrocytes,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63429-8
DOI: 10.1038/s41467-025-63429-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63429-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.