IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63349-7.html
   My bibliography  Save this article

EXO1 as a therapeutic target for Fanconi Anaemia, ZRSR2 and BRCA1-A complex deficient cancers

Author

Listed:
  • Marija Maric

    (The Francis Crick Institute)

  • Sandra Segura-Bayona

    (The Francis Crick Institute)

  • Raviprasad Kuthethur

    (Erasmus University Medical Center)

  • Tohru Takaki

    (The Francis Crick Institute)

  • Valerie Borel

    (The Francis Crick Institute)

  • Tyler H. Stanage

    (The Francis Crick Institute)

  • Miroslav P. Ivanov

    (The Francis Crick Institute)

  • Nishita Parnandi

    (The Francis Crick Institute)

  • Graeme Hewitt

    (The Francis Crick Institute
    Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London)

  • Rhona Millar

    (The Francis Crick Institute)

  • Carmen S. Fonseca

    (Erasmus University Medical Center)

  • Harshil Patel

    (The Francis Crick Institute)

  • Miriam Llorian

    (The Francis Crick Institute)

  • Scott Warchal

    (The Francis Crick Institute)

  • Michael Howell

    (The Francis Crick Institute)

  • Arnab Ray Chaudhuri

    (Erasmus University Medical Center)

  • Panagiotis Kotsantis

    (The Francis Crick Institute
    Lancaster University)

  • Simon J. Boulton

    (The Francis Crick Institute)

Abstract

Exonuclease EXO1 performs multiple roles in DNA replication and DNA damage repair (DDR). However, EXO1 loss is well-tolerated, suggesting the existence of compensatory mechanisms that could be exploited in DDR-deficient cancers. Using CRISPR screening, we find EXO1 loss as synthetic lethal with many DDR genes somatically inactivated in cancers, including Fanconi Anaemia (FA) pathway and BRCA1-A complex genes. We also identify the spliceosome factor and tumour suppressor ZRSR2 as synthetic lethal with loss of EXO1 and show that ZRSR2-deficient cells are attenuated for FA pathway activation, exhibiting cisplatin sensitivity and radial chromosome formation. Furthermore, FA or ZRSR2 deficiencies depend on EXO1 nuclease activity and can be potentiated in combination with PARP inhibitors or ionizing radiation. Finally, we uncover dysregulated replication-coupled repair as the driver of synthetic lethality between EXO1 and FA pathway attributable to defective fork reversal, elevated replication fork speeds, post-replicative single stranded DNA exposure and DNA damage. These findings implicate EXO1 as a synthetic lethal vulnerability and promising drug target in a broad spectrum of DDR-deficient cancers unaddressed by current therapies.

Suggested Citation

  • Marija Maric & Sandra Segura-Bayona & Raviprasad Kuthethur & Tohru Takaki & Valerie Borel & Tyler H. Stanage & Miroslav P. Ivanov & Nishita Parnandi & Graeme Hewitt & Rhona Millar & Carmen S. Fonseca , 2025. "EXO1 as a therapeutic target for Fanconi Anaemia, ZRSR2 and BRCA1-A complex deficient cancers," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63349-7
    DOI: 10.1038/s41467-025-63349-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63349-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63349-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan J. Golden & Beibei Chen & Tuo Li & Juliane Braun & Hema Manjunath & Xiang Chen & Jiaxi Wu & Vanessa Schmid & Tsung-Cheng Chang & Florian Kopp & Andres Ramirez-Martinez & Vincent S. Tagliabracci &, 2017. "An Argonaute phosphorylation cycle promotes microRNA-mediated silencing," Nature, Nature, vol. 542(7640), pages 197-202, February.
    2. Eleni P. Mimitou & Lorraine S. Symington, 2008. "Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing," Nature, Nature, vol. 455(7214), pages 770-774, October.
    3. Chirantani Mukherjee & Vivek Tripathi & Eleni Maria Manolika & Anne Margriet Heijink & Giulia Ricci & Sarra Merzouk & H. Rudolf Boer & Jeroen Demmers & Marcel A. T. M. Vugt & Arnab Ray Chaudhuri, 2019. "RIF1 promotes replication fork protection and efficient restart to maintain genome stability," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. Sean R. Collins & Kyle M. Miller & Nancy L. Maas & Assen Roguev & Jeffrey Fillingham & Clement S. Chu & Maya Schuldiner & Marinella Gebbia & Judith Recht & Michael Shales & Huiming Ding & Hong Xu & Ju, 2007. "Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map," Nature, Nature, vol. 446(7137), pages 806-810, April.
    5. Tohru Takaki & Marco Montagner & Murielle P. Serres & Maël Le Berre & Matt Russell & Lucy Collinson & Karoly Szuhai & Michael Howell & Simon J. Boulton & Erik Sahai & Mark Petronczki, 2017. "Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    6. Yuandi Gao & Laure Guitton-Sert & Julien Dessapt & Yan Coulombe & Amélie Rodrigue & Larissa Milano & Andréanne Blondeau & Nicolai Balle Larsen & Julien P. Duxin & Samer Hussein & Amélie Fradet-Turcott, 2023. "A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    2. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Yilan Fan & Filiz Kuybu & Hengjun Cui & Katja Lammens & Jia-Xuan Chen & Michael Kugler & Christophe Jung & Karl-Peter Hopfner, 2025. "Structural basis for DNA break sensing by human MRE11-RAD50-NBS1 and its regulation by telomeric factor TRF2," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. Qianqian Dong & Matthew Day & Yuichiro Saito & Emma Parker & Lotte P. Watts & Masato T. Kanemaki & Antony W. Oliver & Laurence H. Pearl & Shin-ichiro Hiraga & Anne D. Donaldson, 2025. "The human RIF1-Long isoform interacts with BRCA1 to promote recombinational fork repair under DNA replication stress," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    6. Anchel de Jaime-Soguero & Janina Hattemer & Anja Bufe & Alexander Haas & Jeroen Berg & Vincent Batenburg & Biswajit Das & Barbara Marco & Stefania Androulaki & Nicolas Böhly & Jonathan J. M. Landry & , 2024. "Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    7. Sahiti Kuppa & Jaigeeth Deveryshetty & Rahul Chadda & Jenna R. Mattice & Nilisha Pokhrel & Vikas Kaushik & Angela Patterson & Nalini Dhingra & Sushil Pangeni & Marisa K. Sadauskas & Sajad Shiekh & Ham, 2022. "Rtt105 regulates RPA function by configurationally stapling the flexible domains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Eleni Kabrani & Ali Rahjouei & Maria Berruezo-Llacuna & Svenja Ebeling & Tannishtha Saha & Robert Altwasser & Veronica Delgado-Benito & Rushad Pavri & Michela Virgilio, 2025. "RIF1 integrates DNA repair and transcriptional requirements during the establishment of humoral immune responses," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Vera M. Kissling & Giordano Reginato & Eliana Bianco & Kristina Kasaciunaite & Janny Tilma & Gea Cereghetti & Natalie Schindler & Sung Sik Lee & Raphaël Guérois & Brian Luke & Ralf Seidel & Petr Cejka, 2022. "Mre11-Rad50 oligomerization promotes DNA double-strand break repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Erica J. Polleys & Isabella Priore & James E. Haber & Catherine H. Freudenreich, 2023. "Structure-forming CAG/CTG repeats interfere with gap repair to cause repeat expansions and chromosome breaks," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Zhangli Su & Ida Monshaugen & Briana Wilson & Fengbin Wang & Arne Klungland & Rune Ougland & Anindya Dutta, 2022. "TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. repec:plo:pcbi00:1003016 is not listed on IDEAS
    13. Hannah L. Mackay & Helen R. Stone & George E. Ronson & Katherine Ellis & Alexander Lanz & Yara Aghabi & Alexandra K. Walker & Katarzyna Starowicz & Alexander J. Garvin & Patrick Van Eijk & Stefan A. K, 2024. "USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Tian-Yu Song & Min Long & Hai-Xin Zhao & Miao-Wen Zou & Hong-Jie Fan & Yang Liu & Chen-Lu Geng & Min-Fang Song & Yu-Feng Liu & Jun-Yi Chen & Yu-Lin Yang & Wen-Rong Zhou & Da-Wei Huang & Bo Peng & Zhen, 2021. "Tumor evolution selectively inactivates the core microRNA machinery for immune evasion," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Tingting Niu & Charlotte Rosny & Séverine Chautard & Amaury Rey & Danish Patoli & Marine Groslambert & Camille Cosson & Brice Lagrange & Zhirong Zhang & Orane Visvikis & Sabine Hacot & Maggy Hologne &, 2021. "NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    16. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Hui Fu & Min Huang & Honglin Wu & Hui Zheng & Yifei Gong & Lingyu Xing & Juanjuan Gong & Ruiyuan An & Qian Li & Xinyu Jie & Xiaolu Ma & Tie-Shan Tang & Caixia Guo, 2025. "SART3 promotes homologous recombination repair by stimulating DNA-RNA hybrids removal and DNA end resection," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    18. Lorenzo Galanti & Martina Peritore & Robert Gnügge & Elda Cannavo & Johannes Heipke & Maria Dilia Palumbieri & Barbara Steigenberger & Lorraine S. Symington & Petr Cejka & Boris Pfander, 2024. "Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Adrián Campos & Facundo Ramos & Lydia Iglesias & Celia Delgado & Eva Merino & Antonio Esperilla-Muñoz & Jaime Correa-Bordes & Andrés Clemente-Blanco, 2023. "Cdc14 phosphatase counteracts Cdk-dependent Dna2 phosphorylation to inhibit resection during recombinational DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Felix Y. Zhou & Marissa Ashton & Yiyang Jiang & Neha Arora & Kevin Clark & Kate B. Fitzpatrick & James E. Haber, 2025. "Arp2/3 and type-I myosins control chromosome mobility and end-resection at double-strand breaks in S. cerevisiae," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    21. Ashish Kumar Singh & Tamás Schauer & Lena Pfaller & Tobias Straub & Felix Mueller-Planitz, 2021. "The biogenesis and function of nucleosome arrays," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63349-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.