IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63260-1.html
   My bibliography  Save this article

In-situ detection of pH and dissolved oxygen in electrolyte of aqueous zinc-ion batteries

Author

Listed:
  • Bichu Luo

    (Shanghai Jiao Tong University)

  • Biao Jiang

    (Shanghai Jiao Tong University)

  • Fangyuan Chang

    (Shanghai Jiao Tong University)

  • Xin Xi

    (Shanghai Jiao Tong University)

  • Sheng Lu

    (Shanghai Jiao Tong University)

  • Dongqing Wu

    (Shanghai Jiao Tong University)

  • Yuezeng Su

    (Shanghai Jiao Tong University)

  • Guangyu Cheng

    (Shanghai Institute of Space Power-Sources)

  • Yueni Mei

    (Shanghai Institute of Space Power-Sources)

  • Ruili Liu

    (Shanghai Jiao Tong University)

Abstract

Electrode corrosion and electrolyte decomposition in aqueous zinc-ion batteries (AZIBs) have significant impacts on their capacity, stability, and lifespan. Herein, a portable extended gate field-effect transistor (EGFET)-pH & dissolved oxygen (DO) sensor is constructed for in-situ monitoring of these adverse reactions in AZIBs. The EGFET-pH & DO sensor separates the sensitive electrodes from the detection circuitry, which gives the sensor high stability in aqueous solutions and enables its integration into pouch-type AZIBs. The high sensitivity and robustness of the sensor facilitate the real-time investigation of the variations of pH and DO concentration in the electrolyte of AZIBs at different charging voltage ranges, as well as evaluation of the effects of electrolyte additives on the battery performance. This work expands the electrochemical sensing technique for in-situ monitoring of secondary batteries, enhances the understanding of energy storage mechanisms for AZIBs, and provides reliable data support for battery optimization.

Suggested Citation

  • Bichu Luo & Biao Jiang & Fangyuan Chang & Xin Xi & Sheng Lu & Dongqing Wu & Yuezeng Su & Guangyu Cheng & Yueni Mei & Ruili Liu, 2025. "In-situ detection of pH and dissolved oxygen in electrolyte of aqueous zinc-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63260-1
    DOI: 10.1038/s41467-025-63260-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63260-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63260-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ermanno Miele & Wesley M. Dose & Ilya Manyakin & Michael H. Frosz & Zachary Ruff & Michael F. L. Volder & Clare P. Grey & Jeremy J. Baumberg & Tijmen G. Euser, 2022. "Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Lei Ye & Meng Liao & Kun Zhang & Mengting Zheng & Yi Jiang & Xiangran Cheng & Chuang Wang & Qiuchen Xu & Chengqiang Tang & Pengzhou Li & Yunzhou Wen & Yifei Xu & Xuemei Sun & Peining Chen & Hao Sun & , 2024. "A rechargeable calcium–oxygen battery that operates at room temperature," Nature, Nature, vol. 626(7998), pages 313-318, February.
    3. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Ruan, Jiageng & Ma, Chengbin & Song, Ziyou & Dorrell, David G. & Pecht, Michael G., 2021. "Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Wenxin Mei & Zhi Liu & Chengdong Wang & Chuang Wu & Yubin Liu & Pengjie Liu & Xudong Xia & Xiaobin Xue & Xile Han & Jinhua Sun & Gaozhi Xiao & Hwa-yaw Tam & Jacques Albert & Qingsong Wang & Tuan Guo, 2023. "Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Wei Gao & Sam Emaminejad & Hnin Yin Yin Nyein & Samyuktha Challa & Kevin Chen & Austin Peck & Hossain M. Fahad & Hiroki Ota & Hiroshi Shiraki & Daisuke Kiriya & Der-Hsien Lien & George A. Brooks & Ron, 2016. "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis," Nature, Nature, vol. 529(7587), pages 509-514, January.
    6. Huilin Pan & Yuyan Shao & Pengfei Yan & Yingwen Cheng & Kee Sung Han & Zimin Nie & Chongmin Wang & Jihui Yang & Xiaolin Li & Priyanka Bhattacharya & Karl T. Mueller & Jun Liu, 2016. "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    7. Chengcheng Fang & Jinxing Li & Minghao Zhang & Yihui Zhang & Fan Yang & Jungwoo Z. Lee & Min-Han Lee & Judith Alvarado & Marshall A. Schroeder & Yangyuchen Yang & Bingyu Lu & Nicholas Williams & Migue, 2019. "Quantifying inactive lithium in lithium metal batteries," Nature, Nature, vol. 572(7770), pages 511-515, August.
    8. Jiaqiang Huang & Laura Albero Blanquer & Julien Bonefacino & E. R. Logan & Daniel Alves Dalla Corte & Charles Delacourt & Betar M. Gallant & Steven T. Boles & J. R. Dahn & Hwa-Yaw Tam & Jean-Marie Tar, 2020. "Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors," Nature Energy, Nature, vol. 5(9), pages 674-683, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Annabel Olgo & Sylvie Genies & Romain Franchi & Cédric Septet & Quentin Jacquet & Quentin Berrod & Rasmus Palm & Pascale Chenevier & Elise Villemin & Claire Villevieille & Nils Blanc & Samuel Tardif &, 2024. "Revealing how internal sensors in a smart battery impact the local graphite lithiation mechanism," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Cédric Leau & Yu Wang & Charlotte Gervillié-Mouravieff & Steven T Boles & Xiang-Hua Zhang & Simon Coudray & Catherine Boussard-Plédel & Jean-Marie Tarascon, 2025. "Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Zhang, Zike & Zhao, Wenjie & Ma, Yuechao & Yao, Yuan & Yu, Taolin & Zhang, Wei & Guo, Hongquan & Duan, Xiaoyang & Yan, Ruitian & Xu, Dan & Chen, Minghua, 2025. "A flexible integrated temperature-pressure sensor for wearable detection of thermal runaway in lithium batteries," Applied Energy, Elsevier, vol. 381(C).
    5. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Sheng, Wenjuan & Wang, Junkai & Peng, G.D., 2025. "Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors," Applied Energy, Elsevier, vol. 383(C).
    7. Wenxin Mei & Zhi Liu & Chengdong Wang & Chuang Wu & Yubin Liu & Pengjie Liu & Xudong Xia & Xiaobin Xue & Xile Han & Jinhua Sun & Gaozhi Xiao & Hwa-yaw Tam & Jacques Albert & Qingsong Wang & Tuan Guo, 2023. "Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    9. Lingjie Xie & Bohan Lu & Zhengdi Sima & Yina Liu & Haifeng Ji & Zhenqiu Gao & Peng Jiang & Harm Zalinge & Ivona Z. Mitrovic & Xuhui Sun & Zhen Wen, 2025. "Mechanical–electric dual characteristics solid–liquid interfacing sensor for accurate liquid identification," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Iqra Nazir & Nermish Mushtaq & Waqas Amin, 2025. "Smart Grid Systems: Addressing Privacy Threats, Security Vulnerabilities, and Demand–Supply Balance (A Review)," Energies, MDPI, vol. 18(19), pages 1-77, September.
    11. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    13. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Huang, Jianhua & Zhu, Guoqing & Guo, Dongliang & Huang, Jia & Xiao, Peng & Liu, Tong, 2025. "Study on the extreme early warning method of thermal runaway utilizing li-ion battery strain," Applied Energy, Elsevier, vol. 384(C).
    16. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Jin, Chengwei & Xu, Jun & Jia, Zhenyu & Xie, Yanmin & Zhang, Xianggong & Mei, Xuesong, 2024. "Expansion force signal based rapid detection of early thermal runaway for pouch batteries," Energy, Elsevier, vol. 312(C).
    18. Xiaotan Zhang & Jiongxian Li & Tianqi Wang & Yuxiang Gong & Jiang Zhou, 2025. "Uniaxially oriented zinc metal negative electrodes toward spontaneous dislocation-free homoepitaxy," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Ruirui Zhao & Haifeng Wang & Haoran Du & Ying Yang & Zhonghui Gao & Long Qie & Yunhui Huang, 2022. "Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63260-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.