Author
Listed:
- Qiaoyu Hu
(East China Normal University)
- Changzhi Sun
(Lingang Laboratory)
- Huan He
(East China Normal University)
- Jiazheng Xu
(East China Normal University)
- Danlin Liu
(East China Normal University
East China Normal University)
- Wenqing Zhang
(East China Normal University)
- Sumeng Shi
(East China Normal University)
- Kai Zhang
(East China Normal University
East China Normal University)
- Honglin Li
(East China Normal University
Lingang Laboratory)
Abstract
Recent molecular generation models for structure-based drug design (SBDD) often produce unrealistic 3D molecules due to the neglect of structural feasibility and drug-like properties. In this paper, we introduce DiffGui, a target-conditioned E(3)-equivariant diffusion model that integrates bond diffusion and property guidance, to address the above challenges. The combination of atom diffusion and bond diffusion guarantees the concurrent generation of both atoms and bonds by explicitly modeling their interdependencies. Property guidance incorporates the binding affinity and drug-like properties of molecules into the training and sampling processes. Extensive experiments prove that DiffGui outperforms existing methods in generating molecules with high binding affinity, rational chemical structure, and desirable properties. Ablation studies confirm the importance of bond diffusion and property guidance modules. DiffGui demonstrates effectiveness in both de novo drug design and lead optimization, with validation through wet-lab experiments.
Suggested Citation
Qiaoyu Hu & Changzhi Sun & Huan He & Jiazheng Xu & Danlin Liu & Wenqing Zhang & Sumeng Shi & Kai Zhang & Honglin Li, 2025.
"Target-aware 3D molecular generation based on guided equivariant diffusion,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63245-0
DOI: 10.1038/s41467-025-63245-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63245-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.