Author
Listed:
- Huanbo Sun
(Max Planck Institute for Intelligent Systems
Yale University
Peking University)
- Adam Spiers
(Max Planck Institute for Intelligent Systems
Imperial College London)
- Hyosang Lee
(Max Planck Institute for Intelligent Systems
University of Stuttgart)
- Jonathan Fiene
(Max Planck Institute for Intelligent Systems)
- Georg Martius
(Max Planck Institute for Intelligent Systems
Eberhard Karl University of Tübingen)
Abstract
Robots can benefit from touch perception for enhanced interaction. Interaction involves tactile sensing devices, contact objects, and complex directional force motions (normal and shear) in between. We introduce a comprehensive theory unifying them to advance sensor design, explain shear-induced performance drops, and suggest application scenarios. Our theory, based on sensor isolines, achieves superresolution sensing with sparse units, avoiding dense layouts. Through structural analysis of the sensor perception field, force sensitivity, and contact object effects, we also explore the force direction influences: normal, tangential shear, and radial shear forces. The model predicts an inherent accuracy reduction under shear forces compared to pure normal forces. Validation used Barodome, a 3D sensor predicting contact locations and decoupling shear/normal forces. Its performance confirmed the significant impact of shear forces, with observed drops (0.5 mm) closely matching theoretical predictions (0.33 mm). This theory provides valuable guidance for future tactile sensor design and advanced robotic touch systems.
Suggested Citation
Huanbo Sun & Adam Spiers & Hyosang Lee & Jonathan Fiene & Georg Martius, 2025.
"Sensing multi-directional forces at superresolution using taxel value isoline theory,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63230-7
DOI: 10.1038/s41467-025-63230-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63230-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.