IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63197-5.html
   My bibliography  Save this article

Engineering kidney developmental trajectory using culture boundary conditions

Author

Listed:
  • Aria Zheyuan Huang

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

  • Louis S. Prahl

    (University of Pennsylvania
    University of Pennsylvania)

  • Karen Xu

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

  • Robert L. Mauck

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

  • Jason A. Burdick

    (University of Pennsylvania
    University of Colorado)

  • Alex J. Hughes

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

Abstract

Kidney explants are traditionally cultured at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. Here we develop a 3D culture technique using hydrogel embedding to capture kidney morphogenesis in real time. 3D culture better approximates in vivo-like niche spacing and tubule dynamics, as well as branching defects under control conditions and GDNF-RET signaling perturbations. To isolate the effect of material properties on explant development, we apply acrylated hyaluronic acid hydrogels that allow independent tuning of stiffness and adhesion. We find that sufficient stiffness and adhesive ligands are both required to maintain kidney shape. More adhesive hydrogels increase nephrons per ureteric bud (UB) tip while matrix stiffness has a “Goldilocks effect” centered at ~2 kPa. Our technique captures large-scale, in vivo-like tissue morphogenesis in 3D, improving insight into congenital disease phenotypes. Moreover, understanding the impact of boundary condition mechanics on kidney development benefits fundamental research and renal engineering.

Suggested Citation

  • Aria Zheyuan Huang & Louis S. Prahl & Karen Xu & Robert L. Mauck & Jason A. Burdick & Alex J. Hughes, 2025. "Engineering kidney developmental trajectory using culture boundary conditions," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63197-5
    DOI: 10.1038/s41467-025-63197-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63197-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63197-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karen L. Xu & Nikolas Caprio & Hooman Fallahi & Mohammad Dehghany & Matthew D. Davidson & Lorielle Laforest & Brian C. H. Cheung & Yuqi Zhang & Mingming Wu & Vivek Shenoy & Lin Han & Robert L. Mauck &, 2024. "Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Khondoker M. Akram & Laura L. Yates & Róisín Mongey & Stephen Rothery & David C. A. Gaboriau & Jeremy Sanderson & Matthew Hind & Mark Griffiths & Charlotte H. Dean, 2019. "Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Ryan J. Wade & Ethan J. Bassin & Christopher B. Rodell & Jason A. Burdick, 2015. "Protease-degradable electrospun fibrous hydrogels," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    4. B. Buchmann & L. K. Engelbrecht & P. Fernandez & F. P. Hutterer & M. K. Raich & C. H. Scheel & A. R. Bausch, 2021. "Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Randriamanantsoa & A. Papargyriou & H. C. Maurer & K. Peschke & M. Schuster & G. Zecchin & K. Steiger & R. Öllinger & D. Saur & C. Scheel & R. Rad & E. Hannezo & M. Reichert & A. R. Bausch, 2022. "Spatiotemporal dynamics of self-organized branching in pancreas-derived organoids," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Lin Yang & Qiongliang Liu & Pramod Kumar & Arunima Sengupta & Ali Farnoud & Ruolin Shen & Darya Trofimova & Sebastian Ziegler & Neda Davoudi & Ali Doryab & Ali Önder Yildirim & Markus E. Diefenbacher , 2024. "LungVis 1.0: an automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Daniel Jun-Kit Hu & Xiaoyu Tracy Cai & Jesse Simons & Jina Yun & Justin Elstrott & Heinrich Jasper, 2025. "Non-canonical Wnt signaling promotes epithelial fluidization in the repairing airway," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Jaeseung Youn & Dohui Kim & Hyunsu Kwak & Anna Lee & Dong Sung Kim, 2024. "Tissue-scale in vitro epithelial wrinkling and wrinkle-to-fold transition," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Elena Ortiz-Zapater & Dustin C. Bagley & Virginia Llopis Hernandez & Luke B. Roberts & Thomas J. A. Maguire & Felizia Voss & Philipp Mertins & Marieluise Kirchner & Isabel Peset-Martin & Grzegorz Wosz, 2022. "Epithelial coxsackievirus adenovirus receptor promotes house dust mite-induced lung inflammation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63197-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.