Author
Listed:
- Aria Zheyuan Huang
(University of Pennsylvania
University of Pennsylvania
University of Pennsylvania)
- Louis S. Prahl
(University of Pennsylvania
University of Pennsylvania)
- Karen Xu
(University of Pennsylvania
University of Pennsylvania
University of Pennsylvania
University of Pennsylvania)
- Robert L. Mauck
(University of Pennsylvania
University of Pennsylvania
University of Pennsylvania
University of Pennsylvania)
- Jason A. Burdick
(University of Pennsylvania
University of Colorado)
- Alex J. Hughes
(University of Pennsylvania
University of Pennsylvania
University of Pennsylvania
University of Pennsylvania)
Abstract
Kidney explants are traditionally cultured at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. Here we develop a 3D culture technique using hydrogel embedding to capture kidney morphogenesis in real time. 3D culture better approximates in vivo-like niche spacing and tubule dynamics, as well as branching defects under control conditions and GDNF-RET signaling perturbations. To isolate the effect of material properties on explant development, we apply acrylated hyaluronic acid hydrogels that allow independent tuning of stiffness and adhesion. We find that sufficient stiffness and adhesive ligands are both required to maintain kidney shape. More adhesive hydrogels increase nephrons per ureteric bud (UB) tip while matrix stiffness has a “Goldilocks effect” centered at ~2 kPa. Our technique captures large-scale, in vivo-like tissue morphogenesis in 3D, improving insight into congenital disease phenotypes. Moreover, understanding the impact of boundary condition mechanics on kidney development benefits fundamental research and renal engineering.
Suggested Citation
Aria Zheyuan Huang & Louis S. Prahl & Karen Xu & Robert L. Mauck & Jason A. Burdick & Alex J. Hughes, 2025.
"Engineering kidney developmental trajectory using culture boundary conditions,"
Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63197-5
DOI: 10.1038/s41467-025-63197-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63197-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.