Room-temperature methanol synthesis via CO2 hydrogenation catalyzed by cooperative molybdenum centres in covalent triazine frameworks
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-63191-x
Download full text from publisher
References listed on IDEAS
- Tang Yang & Xinnan Mao & Ying Zhang & Xiaoping Wu & Lu Wang & Mingyu Chu & Chih-Wen Pao & Shize Yang & Yong Xu & Xiaoqing Huang, 2021. "Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Yizhen Chen & Hongliang Li & Wanghui Zhao & Wenbo Zhang & Jiawei Li & Wei Li & Xusheng Zheng & Wensheng Yan & Wenhua Zhang & Junfa Zhu & Rui Si & Jie Zeng, 2019. "Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
- Run-Ping Ye & Jie Ding & Weibo Gong & Morris D. Argyle & Qin Zhong & Yujun Wang & Christopher K. Russell & Zhenghe Xu & Armistead G. Russell & Qiaohong Li & Maohong Fan & Yuan-Gen Yao, 2019. "CO2 hydrogenation to high-value products via heterogeneous catalysis," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xin Zhao & Changzhi Li & Jie Wen & Qian Qiang & Zirong Shen & Haipeng Yu & Xin Zhou & Fengxia Yue & Ruiqi Fang & Yingwei Li & Tao Zhang, 2025. "Catalytic refining lignin into toluene over atomically dispersed Cu/Ni dual sites," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Tang Yang & Xinnan Mao & Ying Zhang & Xiaoping Wu & Lu Wang & Mingyu Chu & Chih-Wen Pao & Shize Yang & Yong Xu & Xiaoqing Huang, 2021. "Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Wenjin Guo & Guangfang Li & Chengbo Bai & Qiong Liu & Fengxi Chen & Rong Chen, 2024. "General synthesis and atomic arrangement identification of ordered Bi–Pd intermetallics with tunable electrocatalytic CO2 reduction selectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Kaiyuan Liu & Zhiyi Sun & Xingjie Peng & Xudong Liu & Xiao Zhang & Boran Zhou & Kedi Yu & Zhengbo Chen & Qiang Zhou & Fang Zhang & Yong Wang & Xin Gao & Wenxing Chen & Pengwan Chen, 2025. "Tailoring asymmetric RuCu dual-atom electrocatalyst toward ammonia synthesis from nitrate," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
- Jiaming Liang & Jiangtao Liu & Lisheng Guo & Wenhang Wang & Chengwei Wang & Weizhe Gao & Xiaoyu Guo & Yingluo He & Guohui Yang & Shuhei Yasuda & Bing Liang & Noritatsu Tsubaki, 2024. "CO2 hydrogenation over Fe-Co bimetallic catalysts with tunable selectivity through a graphene fencing approach," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Si Woo Lee & Mauricio Lopez Luna & Nikolay Berdunov & Weiming Wan & Sebastian Kunze & Shamil Shaikhutdinov & Beatriz Roldan Cuenya, 2023. "Unraveling surface structures of gallium promoted transition metal catalysts in CO2 hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Gui Liu & Pengfei Liu & Deming Meng & Taotao Zhao & Xiaofeng Qian & Qiang He & Xuefeng Guo & Jizhen Qi & Luming Peng & Nianhua Xue & Yan Zhu & Jingyuan Ma & Qiang Wang & Xi Liu & Liwei Chen & Weiping , 2023. "COx hydrogenation to methanol and other hydrocarbons under mild conditions with Mo3S4@ZSM-5," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Martin Tomas & Mohammadtaghi Vakili, 2021. "A Review on Production of Light Olefins via Fluid Catalytic Cracking," Energies, MDPI, vol. 14(4), pages 1-36, February.
- Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
- Jie Ding & Xiaofang Shang & Yimeng Zhou & Aizhe Han & Fan Zhang & Yanghe Fu & Yulong Zhang & Runping Ye & Maohong Fan & Shule Zhang & Qin Zhong, 2025. "In-situ synthesis of interfacial In-O-Mn lewis acid-base pairs for low-temperature photothermal CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
- Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2025. "A case study of sustainable aviation fuel production from scrap tyres," Energy, Elsevier, vol. 327(C).
- Daniel Chuquin-Vasco & Francis Parra & Nelson Chuquin-Vasco & Juan Chuquin-Vasco & Vanesa Lo-Iacono-Ferreira, 2021. "Prediction of Methanol Production in a Carbon Dioxide Hydrogenation Plant Using Neural Networks," Energies, MDPI, vol. 14(13), pages 1-18, July.
- Zhongling Li & Wenlong Wu & Menglin Wang & Yanan Wang & Xinlong Ma & Lei Luo & Yue Chen & Kaiyuan Fan & Yang Pan & Hongliang Li & Jie Zeng, 2022. "Ambient-pressure hydrogenation of CO2 into long-chain olefins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Sigmund Jensen & Mathias H. R. Mammen & Martin Hedevang & Zheshen Li & Lutz Lammich & Jeppe V. Lauritsen, 2024. "Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
- Runping Ye & Lixuan Ma & Jianing Mao & Xinyao Wang & Xiaoling Hong & Alessandro Gallo & Yanfu Ma & Wenhao Luo & Baojun Wang & Riguang Zhang & Melis Seher Duyar & Zheng Jiang & Jian Liu, 2024. "A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Gao, Ruxing & Zhang, Leiyu & Wang, Lei & Zhang, Chundong & Jun, Ki-Won & Kim, Seok Ki & Park, Hae-Gu & Gao, Ying & Zhu, Yuezhao & Wan, Hui & Guan, Guofeng & Zhao, Tiansheng, 2022. "Efficient production of renewable hydrocarbon fuels using waste CO2 and green H2 by integrating Fe-based Fischer-Tropsch synthesis and olefin oligomerization," Energy, Elsevier, vol. 248(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63191-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63191-x.html