Author
Listed:
- Ruonan Wang
(Nanjing Forestry University
Nanjing University of Science and Technology)
- Mingjia Zhang
(Nanjing University of Science and Technology)
- Jingjing Liu
(Nanjing University of Science and Technology)
- Xu Wu
(Taiyuan University of Technology)
- Shule Zhang
(Nanjing University of Science and Technology)
- Qin Zhong
(Nanjing University of Science and Technology)
- Jianfeng Yao
(Nanjing Forestry University)
Abstract
Scaling up methanol yields by artificial photosynthesis at a modest cost remains thermodynamically challenge. Designing concerted reaction sites to control intermediate evolution and stimulate proton-coupled electron transfer (PCET) is necessary. Here we show a nickel-titanium-based catalyst that achieves near-millimolar hourly methanol yields with 99.79% selectivity and a solar-to-chemical conversion efficiency of 2.23%. This catalyst is synthesized through one-step etching of NiTi-layered double hydroxide, which generates abundant unsaturated sites, along with the in-situ formation of amorphous TiO2. Revealed by in-situ characterizations, these defect-rich units effectively suppress the formation of undesirable carbonate while promoting the favorable *COOH intermediate. Furthermore, theoretical simulations confirm this *COOH boost facilitates the production of *CO and accelerates the PCET steps. This work significantly advances efficient methanol production by artificial photosynthesis and offers fundamental insights into controlling reaction pathways for renewable fuel synthesis.
Suggested Citation
Ruonan Wang & Mingjia Zhang & Jingjing Liu & Xu Wu & Shule Zhang & Qin Zhong & Jianfeng Yao, 2025.
"Defect-phase engineered NiTi-TiO2 enabling near-unity selective photocatalytic CO2-to-methanol conversion,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63179-7
DOI: 10.1038/s41467-025-63179-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63179-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.