IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63175-x.html
   My bibliography  Save this article

Gene duplication and clustering underlie the conservation and diversification of benzylisoquinoline alkaloid biosynthesis in plants

Author

Listed:
  • Changheng Shan

    (Shanghai Jiao Tong University)

  • Xuan Zhou

    (Shanghai Jiao Tong University)

  • Jiaojiao Zhu

    (Shanghai Jiao Tong University)

  • Aatif Rashid

    (Shanghai Jiao Tong University)

  • Jianhua Wang

    (Shanghai Jiao Tong University)

  • Ning An

    (Shanghai Jiao Tong University)

  • Changjian Zhang

    (Shanghai Jiao Tong University)

  • Wenjuan Ji

    (Shanghai Jiao Tong University)

  • Baosong Cai

    (Shanghai Jiao Tong University)

  • Ke Wu

    (Shanghai Jiao Tong University)

  • Sheng Wang

    (China Academy of Chinese Medical Sciences
    Dexing Research and Training Center of Chinese Medical Sciences)

  • Zhenhua Liu

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Benzylisoquinoline alkaloids (BIAs), comprising ~2500 compounds with pharmacological significance, are well-studied in Ranunculales but poorly understood in Magnoliids, an early-diverging angiosperm group. This study characterizes key enzymes in Houttuynia cordata—including 6-OMT, NMT, CYP80B, and 4’OMT—that form BIA backbones and uncovers a CYP80G-mediated phenol coupling reaction in isoboldine biosynthesis. Functional analysis reveals conservation of BIA backbone formation genes between Magnoliids and Ranunculales, with evidence of gene duplication and neofunctionalization in H. cordata. Genome-wide analysis identifies dynamic clustering of CYP80B with 4’OMT and 6-OMT genes across angiosperms, reflecting their interlinked biochemical roles in the formation of BIA backbones. These findings suggest that such gene clustering may evolved through biochemical coordination, offering insights into the evolutionary mechanisms behind plant gene cluster formation. The study provides a foundation for understanding BIA biosynthesis across flowering plants and supports synthetic biology strategies to produce high-value BIAs.

Suggested Citation

  • Changheng Shan & Xuan Zhou & Jiaojiao Zhu & Aatif Rashid & Jianhua Wang & Ning An & Changjian Zhang & Wenjuan Ji & Baosong Cai & Ke Wu & Sheng Wang & Zhenhua Liu, 2025. "Gene duplication and clustering underlie the conservation and diversification of benzylisoquinoline alkaloid biosynthesis in plants," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63175-x
    DOI: 10.1038/s41467-025-63175-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63175-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63175-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Leng & Zhichao Xu & Bixia Hong & Binbin Zhao & Ya Tian & Can Wang & Lulu Yang & Zhongmei Zou & Lingyu Li & Ke Liu & Wanjun Peng & Jiangning Liu & Zhoujie An & Yalin Wang & Baozhong Duan & Zhigan, 2024. "Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Zhenhua Liu & Jitender Cheema & Marielle Vigouroux & Lionel Hill & James Reed & Pirita Paajanen & Levi Yant & Anne Osbourn, 2020. "Formation and diversification of a paradigm biosynthetic gene cluster in plants," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Yifei Liu & Bo Wang & Shaohua Shu & Zheng Li & Chi Song & Di Liu & Yan Niu & Jinxin Liu & Jingjing Zhang & Heping Liu & Zhigang Hu & Bisheng Huang & Xiuyu Liu & Wei Liu & Liping Jiang & Mohammad Murta, 2021. "Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Leng & Zhichao Xu & Bixia Hong & Binbin Zhao & Ya Tian & Can Wang & Lulu Yang & Zhongmei Zou & Lingyu Li & Ke Liu & Wanjun Peng & Jiangning Liu & Zhoujie An & Yalin Wang & Baozhong Duan & Zhigan, 2024. "Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Xiaofei Yang & Shenghan Gao & Li Guo & Bo Wang & Yanyan Jia & Jian Zhou & Yizhuo Che & Peng Jia & Jiadong Lin & Tun Xu & Jianyong Sun & Kai Ye, 2021. "Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Xin-Cheng Huang & Huanying Tang & Xuefen Wei & Yuedong He & Shuaiya Hu & Jia-Yi Wu & Dingqiao Xu & Fei Qiao & Jia-Yu Xue & Yucheng Zhao, 2024. "The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Abigail E. Bryson & Emily R. Lanier & Kin H. Lau & John P. Hamilton & Brieanne Vaillancourt & Davis Mathieu & Alan E. Yocca & Garret P. Miller & Patrick P. Edger & C. Robin Buell & Björn Hamberger, 2023. "Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Theresa Catania & Yi Li & Thilo Winzer & David Harvey & Fergus Meade & Anna Caridi & Andrew Leech & Tony R. Larson & Zemin Ning & Jiyang Chang & Yves Peer & Ian A. Graham, 2022. "A functionally conserved STORR gene fusion in Papaver species that diverged 16.8 million years ago," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Wei Sun & Qinggang Yin & Huihua Wan & Ranran Gao & Chao Xiong & Chong Xie & Xiangxiao Meng & Yaolei Mi & Xiaotong Wang & Caixia Wang & Weiqiang Chen & Ziyan Xie & Zheyong Xue & Hui Yao & Peng Sun & Xu, 2023. "Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63175-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.