IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63171-1.html
   My bibliography  Save this article

Néel spin-orbit torque in antiferromagnetic quantum spin and anomalous Hall insulators

Author

Listed:
  • Junyu Tang

    (University of California)

  • Hantao Zhang

    (University of California)

  • Ran Cheng

    (University of California
    University of California
    University of California)

Abstract

Interplay between topological electrons and magnetic ordering enables efficient electrical control of magnetism. We extend the Kane-Mele model to include the exchange coupling to a collinear antiferromagnetic (AFM) order, which allows the system to exhibit the quantum anomalous Hall and quantum spin Hall effects in the absence of a net magnetization. These topological phases support a staggered Edelstein effect through which an applied electric field can generate opposite non-equilibrium spins on the two AFM sublattices, realizing the Néel-type spin-orbit torque (NSOT). Contrary to known NSOTs in AFM metals driven by conduction currents, our NSOT arises from pure adiabatic currents devoid of Joule heating, while being a bulk effect not carried by the edge currents. By virtue of the NSOT, the electric field of a microwave can drive the AFM resonance with a remarkably high efficiency, outpacing the magnetic field-induced AFM resonance by orders of magnitude in terms of power absorption.

Suggested Citation

  • Junyu Tang & Hantao Zhang & Ran Cheng, 2025. "Néel spin-orbit torque in antiferromagnetic quantum spin and anomalous Hall insulators," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63171-1
    DOI: 10.1038/s41467-025-63171-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63171-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63171-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63171-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.