IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63155-1.html
   My bibliography  Save this article

scIVNL-seq resolves in vivo single-cell RNA dynamics of immune cells during Salmonella infection

Author

Listed:
  • Zhen Xiong

    (Chinese Academy of Sciences)

  • Runyuan Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuanxin Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuwei Xu

    (Chinese Academy of Sciences)

  • Cunzhen Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Deyuan Kong

    (Nanjing Medical University)

  • Ziqi Xiao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peikang Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhonglong Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peng Zhang

    (Chinese Academy of Sciences)

  • Ying Du

    (Chinese Academy of Sciences)

  • Hui Guo

    (Chinese Academy of Sciences)

  • Pingping Zhu

    (Zhengzhou University)

  • Shunmin He

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zusen Fan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Shenzhen University of Advanced Technology)

Abstract

The immune response against pathogens involves multiple cell state transitions and complex gene expression changes. Here, we establish a single-cell in vivo new RNA labeling sequencing method (scIVNL-seq) and apply it to survey time-resolved RNA dynamics during immune response to acute enteric infection with Salmonella. We show that the detection of new RNA synthesis reflects more realistic information on cell activation and gene transcription than total RNA level. Interplay of RNA synthesis and degradation modulates the dynamics of total RNA. The bone marrow macrophages are first primed at a very early stage upon Salmonella infection. In contrast, the innate immune response of macrophages in intestine is limited. Notably, intestinal CD8+ T cells and plasma cells are rapidly and specifically activated at the early stage post infection. Intestinal late enterocytes quickly express MHC-I molecules and present Salmonella antigen to CD8+ T cells for their activation, serving as antigen presenting cells for the initiation of adaptive immunity. Our findings reveal the RNA control strategies and the dynamic activation rules of immune cells in response to Salmonella infection, challenging the doctrine boundary between innate immunity and adaptive immunity against bacterial infection.

Suggested Citation

  • Zhen Xiong & Runyuan Wu & Yuanxin Wang & Yuwei Xu & Cunzhen Li & Deyuan Kong & Ziqi Xiao & Peikang Zhang & Zhonglong Wang & Peng Zhang & Ying Du & Hui Guo & Pingping Zhu & Shunmin He & Zusen Fan, 2025. "scIVNL-seq resolves in vivo single-cell RNA dynamics of immune cells during Salmonella infection," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63155-1
    DOI: 10.1038/s41467-025-63155-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63155-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63155-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    2. Alex K. Shalek & Rahul Satija & Joe Shuga & John J. Trombetta & Dave Gennert & Diana Lu & Peilin Chen & Rona S. Gertner & Jellert T. Gaublomme & Nir Yosef & Schraga Schwartz & Brian Fowler & Suzanne W, 2014. "Single-cell RNA-seq reveals dynamic paracrine control of cellular variation," Nature, Nature, vol. 510(7505), pages 363-369, June.
    3. Suoqin Jin & Christian F. Guerrero-Juarez & Lihua Zhang & Ivan Chang & Raul Ramos & Chen-Hsiang Kuan & Peggy Myung & Maksim V. Plikus & Qing Nie, 2021. "Inference and analysis of cell-cell communication using CellChat," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    4. Ankit Malik & Deepika Sharma & Raúl Aguirre-Gamboa & Shaina McGrath & Sarah Zabala & Christopher Weber & Bana Jabri, 2023. "Epithelial IFNγ signalling and compartmentalized antigen presentation orchestrate gut immunity," Nature, Nature, vol. 623(7989), pages 1044-1052, November.
    5. Gert-Jan Hendriks & Lisa A. Jung & Anton J. M. Larsson & Michael Lidschreiber & Oscar Andersson Forsman & Katja Lidschreiber & Patrick Cramer & Rickard Sandberg, 2019. "NASC-seq monitors RNA synthesis in single cells," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Florian Erhard & Marisa A. P. Baptista & Tobias Krammer & Thomas Hennig & Marius Lange & Panagiota Arampatzi & Christopher S. Jürges & Fabian J. Theis & Antoine-Emmanuel Saliba & Lars Dölken, 2019. "scSLAM-seq reveals core features of transcription dynamics in single cells," Nature, Nature, vol. 571(7765), pages 419-423, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Yin & Yiling Xu & Ye Guo & Zhong Zheng & Xinrui Lin & Meijuan Zhao & He Dong & Dianyi Liang & Zhi Zhu & Junhua Zheng & Shichao Lin & Jia Song & Chaoyong Yang, 2024. "Dyna-vivo-seq unveils cellular RNA dynamics during acute kidney injury via in vivo metabolic RNA labeling-based scRNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Shichao Lin & Kun Yin & Yingkun Zhang & Fanghe Lin & Xiaoyong Chen & Xi Zeng & Xiaoxu Guo & Huimin Zhang & Jia Song & Chaoyong Yang, 2023. "Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    4. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Maximilian Reck & David P. Baird & Stefan Veizades & Callum Sutherland & Rachel M. B. Bell & Heeyoun Hur & Carolynn Cairns & Piotr P. Janas & Ross Campbell & Andy Nam & Wei Yang & Nathan Schurman & Cl, 2025. "Multiomic analysis of human kidney disease identifies a tractable inflammatory and pro-fibrotic tubular cell phenotype," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    6. Teresa Rummel & Lygeri Sakellaridi & Florian Erhard, 2023. "grandR: a comprehensive package for nucleotide conversion RNA-seq data analysis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Xi Li & Alfonso Poire & Kang Jin Jeong & Dong Zhang & Tugba Yildiran Ozmen & Gang Chen & Chaoyang Sun & Gordon B. Mills, 2024. "C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Bibiana Costa & Jennifer Becker & Tobias Krammer & Felix Mulenge & Verónica Durán & Andreas Pavlou & Olivia Luise Gern & Xiaojing Chu & Yang Li & Luka Čičin-Šain & Britta Eiz-Vesper & Martin Messerle , 2024. "Human cytomegalovirus exploits STING signaling and counteracts IFN/ISG induction to facilitate infection of dendritic cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Lisa Veghini & Davide Pasini & Rui Fang & Pietro Delfino & Dea Filippini & Christian Neander & Caterina Vicentini & Elena Fiorini & Francesca Lupo & Sabrina L. D’Agosto & Carmine Carbone & Antonio Ago, 2024. "Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Rachael G. Aubin & Emma C. Troisi & Javier Montelongo & Adam N. Alghalith & Maclean P. Nasrallah & Mariarita Santi & Pablo G. Camara, 2022. "Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Yue Li & Tianfeng Lu & Pengzhen Dong & Jian Chen & Qiang Zhao & Yuying Wang & Tianheng Xiao & Honggang Wu & Quanyi Zhao & Hai Huang, 2024. "A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Xuming Zhu & Mingang Xu & Celine Portal & Yvonne Lin & Alyssa Ferdinand & Tien Peng & Edward E. Morrisey & Andrzej A. Dlugosz & Joseph M. Castellano & Vivian Lee & John T. Seykora & Sunny Y. Wong & Ca, 2025. "Identification of Meibomian gland stem cell populations and mechanisms of aging," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    13. Z. L. Liu & X. Y. Meng & R. J. Bao & M. Y. Shen & J. J. Sun & W. D. Chen & F. Liu & Y. He, 2024. "Single cell deciphering of progression trajectories of the tumor ecosystem in head and neck cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Rohit Arora & Christian Cao & Mehul Kumar & Sarthak Sinha & Ayan Chanda & Reid McNeil & Divya Samuel & Rahul K. Arora & T. Wayne Matthews & Shamir Chandarana & Robert Hart & Joseph C. Dort & Jeff Bier, 2023. "Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Yumin Liu & Linjuan Shi & Yifan Chen & Sifan Luo & Yuehang Chen & Hongtian Chen & Wenlang Lan & Xun Lu & Zhan Cao & Zehua Ye & Jinping Li & Bo Yu & Elaine Dzierzak & Zhuan Li, 2024. "Autophagy regulates the maturation of hematopoietic precursors in the embryo," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Dandan Cao & Yijun Liu & Yanfei Cheng & Jue Wang & Bolun Zhang & Yanhui Zhai & Kongfu Zhu & Ye Liu & Ye Shang & Xiao Xiao & Yi Chang & Yin Lau Lee & William Shu Biu Yeung & Yuanhua Huang & Yuanqing Ya, 2025. "Time-series single-cell transcriptomic profiling of luteal-phase endometrium uncovers dynamic characteristics and its dysregulation in recurrent implantation failures," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    17. Ji Yoon Lee & Eun Jung Lee & Bo Yeon Seo & Jiwon Kim & Youjin Song & Dayoung Lee & Namsung Moon & Harim Koo & Chul-Kee Park & Min-Sung Kim & Serk In Park & Do-Hyun Nam & Doo-Sik Kong & Jason K. Sa, 2025. "Single-cell analysis reveals a longitudinal trajectory of meningioma evolution and heterogeneity," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    18. Yuki Matsushita & Angel Ka Yan Chu & Chiaki Tsutsumi-Arai & Shion Orikasa & Mizuki Nagata & Sunny Y. Wong & Joshua D. Welch & Wanida Ono & Noriaki Ono, 2022. "The fate of early perichondrial cells in developing bones," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Leila R. Martins & Lina Sieverling & Michelle Michelhans & Chiara Schiller & Cihan Erkut & Thomas G. P. Grünewald & Sergio Triana & Stefan Fröhling & Lars Velten & Hanno Glimm & Claudia Scholl, 2024. "Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    20. Kai He & Xue Dong & Tianjing Yang & Ziqi Li & Yuming Liu & Jing He & Meng Wu & Selena Wei-Zhang & Parhat Kaysar & Bohao Cui & Xueming Yao & Li Zhang & Wei Zhou & Heping Xu & Jun Wei & Qiang Liu & Junh, 2025. "Smoking aggravates neovascular age-related macular degeneration via Sema4D-PlexinB1 axis-mediated activation of pericytes," Nature Communications, Nature, vol. 16(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63155-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.