Author
Listed:
- Paige E. Allen
(School of Medicine)
- David L. Armistead
(School of Medicine)
- Svetlana Blinova
(School of Medicine)
- Jason A. Carlyon
(School of Medicine)
Abstract
Infections by intracellular pathogens often cause insult to host cell DNA, which stimulates responses that ultimately eliminate the damaged cell and hence the microbial niche. p53 is an innate immunity mediator that responds to DNA damage and intracellular infection by transcriptionally activating pathways that arrest the cell cycle, repair DNA, and elicit apoptosis. How pathogens counter p53 are incompletely understood. Here, we demonstrate that the endotheliotropic obligate intracellular bacterium Orientia tsutsugamushi blocks transcription of TP53 to nearly deplete p53 levels. Contrary to the unrestricted proliferation expected based on the transcriptome of p53-deficient infected cells, Orientia arrests the cell cycle at S phase to promote bacterial replication. It protects host endothelial cells from DNA damage even if induced by etoposide and delays genotoxic-dependent apoptosis until late in infection once a high bacterial load has been achieved. TP53 downregulation, protection against genotoxicity, and inhibition of DNA damage-dependent apoptosis are executed by the Orientia nucleomodulatory effector, Ank13. Therefore, O. tsutsugamushi inhibits TP53 expression and genotoxicity to reconfigure the intracellular environment of its host cell into one that favors bacterial replication.
Suggested Citation
Paige E. Allen & David L. Armistead & Svetlana Blinova & Jason A. Carlyon, 2025.
"Orientia tsutsugamushi modulates p53, the cell cycle, and genotoxicity to maintain its intracellular niche,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63149-z
DOI: 10.1038/s41467-025-63149-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63149-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.