Author
Listed:
- Min-Jie Yang
(Chinese Academy of Sciences)
- De-Sen Li
(Chinese Academy of Sciences)
- Hua-Qin Deng
(Chinese Academy of Sciences)
- Wen-Yuan Li
(Chinese Academy of Sciences)
- Xin-Yu Zheng
(Chinese Academy of Sciences)
- Jonathan Gershenzon
(Max Planck Institute for Chemical Ecology)
- Xue-Mei Niu
(Yunnan University)
- Yan Liu
(Chinese Academy of Sciences
Chengdu University of Traditional Chinese Medicine)
- Sheng-Hong Li
(Chinese Academy of Sciences
Chengdu University of Traditional Chinese Medicine)
Abstract
Terpene cyclases catalyze exquisite and complicated cyclization reactions to generate diverse terpenoid skeletons. Trichoderma fungi are important biocontrol agents, characteristic of producing complex bioactive tetracyclic diterpenoids named harzianes and trichodermanins, but their biosynthesis and biological functions have long been enigmatic. Here we identify TriDTCs, an unprecedented family of terpene cyclases in Trichoderma, responsible for cyclizing geranylgeranyl diphosphate (GGPP) into major diterpenes harzianol I and wickerol A, via heterologous expressions, gene deletion, and in vitro assays. TriDTCs represent a brand new class of terpene cyclases, lacking known motifs and diverging from all known enzymes. Mechanistically, TriDTCs likely employ a unique DxxDxxxD aspartate triad for cyclization initiation, a critical valine residue modulating product specificity, and “gatekeeper” residues for activity. Phylogenetic analysis shows TriDTCs have a narrow distribution in three fungal genera and are highly functionally specific within Trichoderma, suggesting a genus-specific acquisition and independent evolution. Functional studies implicated TriDTCs in fungal survival strategies by regulating formation of resistant propagules (chlamydospore in Trichoderma, sclerotia in Aspergillus oryzae). These findings expand the knowledge of terpene cyclase diversity and biological significance, herald a strategy to enhance Trichoderma’s biocontrol efficacy, and open avenues for pharmacological investigation of these diterpenoids.
Suggested Citation
Min-Jie Yang & De-Sen Li & Hua-Qin Deng & Wen-Yuan Li & Xin-Yu Zheng & Jonathan Gershenzon & Xue-Mei Niu & Yan Liu & Sheng-Hong Li, 2025.
"Noncanonical terpene cyclases for the biosynthesis of diterpenoids regulating chlamydospore formation in plant-associated Trichoderma,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63055-4
DOI: 10.1038/s41467-025-63055-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63055-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.