IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62981-7.html
   My bibliography  Save this article

Chemically modified tRNA enhances the translation capacity of mRNA rich in cognate codons

Author

Listed:
  • Liangzhen Dong

    (Peking University)

  • Jiayu Wang

    (Peking University)

  • Qing Xia

    (Peking University)

Abstract

Although messenger RNA (mRNA) vaccines have been employed to prevent the spread of COVID-19, they are still limited by instability and low translation capacity. Alterations in tRNA abundance and modification, linking codon optimality, impact mRNA stability and protein output in a codon-dependent manner, suggesting tRNA as a potential translation enhancer. Here, we report a strategy named tRNA-plus to augment translation via artificially modulating tRNA availability. Overexpression of specific tRNAs enhances the stability and translation efficiency of SARS-CoV-2 Spike mRNA, boosting protein levels up to 4.7-fold. Additionally, chemically synthesized tRNAs bearing multiple site-specific modifications, particularly at the anticodon-loop and TΨC-loop, exhibit on average ~4-fold higher decoding efficacy than unmodified tRNAs, along with increased stability and reduced immunotoxicity. Furthermore, codelivery of Spike mRNA vaccine and tRNA through lipid nanoparticles elicits augmented humoral and cellular immune responses in vivo. These results presented here provide a general approach to elevate mRNA translation potency, with applications in diverse translation-based fields.

Suggested Citation

  • Liangzhen Dong & Jiayu Wang & Qing Xia, 2025. "Chemically modified tRNA enhances the translation capacity of mRNA rich in cognate codons," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62981-7
    DOI: 10.1038/s41467-025-62981-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62981-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62981-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaming Wang & Yue Zhang & Craig A. Mendonca & Onur Yukselen & Khaja Muneeruddin & Lingzhi Ren & Jialing Liang & Chen Zhou & Jun Xie & Jia Li & Zhong Jiang & Alper Kucukural & Scott A. Shaffer & Guang, 2022. "AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice," Nature, Nature, vol. 604(7905), pages 343-348, April.
    2. Suki Albers & Elizabeth C. Allen & Nikhil Bharti & Marcos Davyt & Disha Joshi & Carlos G. Perez-Garcia & Leonardo Santos & Rajesh Mukthavaram & Miguel Angel Delgado-Toscano & Brandon Molina & Kristen , 2023. "Engineered tRNAs suppress nonsense mutations in cells and in vivo," Nature, Nature, vol. 618(7966), pages 842-848, June.
    3. Vladimir Despic & Samie R. Jaffrey, 2023. "mRNA ageing shapes the Cap2 methylome in mammalian mRNA," Nature, Nature, vol. 614(7947), pages 358-366, February.
    4. John D. Lueck & Jae Seok Yoon & Alfredo Perales-Puchalt & Adam L. Mackey & Daniel T. Infield & Mark A. Behlke & Marshall R. Pope & David B. Weiner & William R. Skach & Paul B. McCray & Christopher A. , 2019. "Engineered transfer RNAs for suppression of premature termination codons," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. He Zhang & Liang Zhang & Ang Lin & Congcong Xu & Ziyu Li & Kaibo Liu & Boxiang Liu & Xiaopin Ma & Fanfan Zhao & Huiling Jiang & Chunxiu Chen & Haifa Shen & Hangwen Li & David H. Mathews & Yujian Zhang, 2023. "Algorithm for optimized mRNA design improves stability and immunogenicity," Nature, Nature, vol. 621(7978), pages 396-403, September.
    6. Wenlong Ding & Hongxia Zhao & Yulin Chen & Bin Zhang & Yang Yang & Jia Zang & Jing Wu & Shixian Lin, 2020. "Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikhil Bharti & Leonardo Santos & Marcos Davyt & Stine Behrmann & Marie Eichholtz & Alejandro Jimenez-Sanchez & Jeong S. Hong & Andras Rab & Eric J. Sorscher & Suki Albers & Zoya Ignatova, 2024. "Translation velocity determines the efficacy of engineered suppressor tRNAs on pathogenic nonsense mutations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Laura K. White & Aleksandar Radakovic & Marcin P. Sajek & Kezia Dobson & Kent A. Riemondy & Samantha Pozo & Jack W. Szostak & Jay R. Hesselberth, 2025. "Nanopore sequencing of intact aminoacylated tRNAs," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Hongxia Zhao & Wenlong Ding & Jia Zang & Yang Yang & Chao Liu & Linzhen Hu & Yulin Chen & Guanglong Liu & Yu Fang & Ying Yuan & Shixian Lin, 2021. "Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Dan-Dan Liu & Wenlong Ding & Jin-Tao Cheng & Qiushi Wei & Yinuo Lin & Tian-Yi Zhu & Jing Tian & Ke Sun & Long Zhang & Peilong Lu & Fan Yang & Chao Liu & Shibing Tang & Bing Yang, 2024. "Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Masahito Inagaki & Naoko Abe & Zhenmin Li & Yuko Nakashima & Susit Acharyya & Kazuya Ogawa & Daisuke Kawaguchi & Haruka Hiraoka & Ayaka Banno & Zheyu Meng & Mizuki Tada & Tatsuma Ishida & Pingxue Lyu , 2023. "Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. K. Yu. Vlasova & A. Kerr & N. D. Pennock & A. Jozic & D. K. Sahel & M. Gautam & N. T. V. Murthy & A. Roberts & M. W. Ali & K. D. MacDonald & J. M. Walker & R. Luxenhofer & G. Sahay, 2025. "Synthesis of ionizable lipopolymers using split-Ugi reaction for pulmonary delivery of various size RNAs and gene editing," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    7. Yekaterina Shulgina & Marena I. Trinidad & Conner J. Langeberg & Hunter Nisonoff & Seyone Chithrananda & Petr Skopintsev & Amos J. Nissley & Jaymin Patel & Ron S. Boger & Honglue Shi & Peter H. Yoon &, 2024. "RNA language models predict mutations that improve RNA function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Wenjing Bai & Jinxin Xu & Wenbin Gu & Danyang Wang & Ying Cui & Weidong Rong & Xiaoan Du & Xiaoxia Li & Cuicui Xia & Qingqing Gan & Guantao He & Huahui Guo & Jinfeng Deng & Yuqiong Wu & Ray-Whay Chiu , 2025. "Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    9. Yan Li & Qianmin Wang & Yanhui Xu & Ze Li, 2024. "Structures of co-transcriptional RNA capping enzymes on paused transcription complex," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Aidan T. Riley & James M. Robson & Aiganysh Ulanova & Alexander A. Green, 2025. "Generative and predictive neural networks for the design of functional RNA molecules," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    11. Evelyn M. Kimbrough & Ha An Nguyen & Haixing Li & Jacob M. Mattingly & Nevette A. Bailey & Wei Ning & Howard Gamper & Ya-Ming Hou & Ruben L. Gonzalez & Christine M. Dunham, 2025. "An RNA modification prevents extended codon-anticodon interactions from facilitating +1 frameshifting," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Qunfeng Zhang & Ling Jiang & Yadan Niu & Yujie Li & Wanyi Chen & Jingxi Cheng & Haote Ding & Binbin Chen & Ke Liu & Jiawen Cao & Junli Wang & Shilin Ye & Lirong Yang & Jianping Wu & Gang Xu & Jianping, 2025. "Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids," Nature Communications, Nature, vol. 16(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62981-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.