Author
Listed:
- Raffaele Bonadio
(University of Cambridge)
- Sergei Lebedev
(University of Cambridge
Dublin Institute for Advanced Studies)
- David Chew
(Museum Building, Trinity College Dublin)
- Yihe Xu
(University of Cambridge
Yunnan University)
- Javier Fullea
(Dublin Institute for Advanced Studies
Universidad Complutense Madrid)
- Thomas Meier
(Christian Albrecht University)
Abstract
Mantle plumes, the hot upwellings from the Earth’s core-mantle boundary, are thought to trigger surface uplift and the emplacement of large igneous provinces (LIPs). Magmatic centres of many LIPs are scattered over thousands of kilometres. This has been attributed to lateral flow of plume material into thin-lithosphere areas, but evidence for such flow is scarce. Here, we use abundant seismic data and recently developed methods of seismic thermography to map previously unknown plate-thickness variations in the Britain-Ireland part of the North Atlantic Igneous Province, linked to the Iceland Plume. The locations of the ~ 60 Myr old uplift and magmatism are systematically where the lithosphere is anomalously thin at present. The dramatic correlation indicates that the hot Iceland Plume material reached this region and eroded its lithosphere, with the thin lithosphere, hot asthenosphere and its decompression melting causing the uplift and magmatism. We demonstrate, further, that the unevenly distributed current intraplate seismicity in Britain and Ireland is also localised in the thin-lithosphere areas and along lithosphere-thickness contrasts. The deep-mantle plume has created not only a pattern of thin-lithosphere areas and scattered magmatic centres but, also, lasting mechanical heterogeneity of the lithosphere that controls long-term distributions of deformation, earthquakes and seismic hazard.
Suggested Citation
Raffaele Bonadio & Sergei Lebedev & David Chew & Yihe Xu & Javier Fullea & Thomas Meier, 2025.
"Volcanism and long-term seismicity controlled by plume-induced plate thinning,"
Nature Communications, Nature, vol. 16(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62967-5
DOI: 10.1038/s41467-025-62967-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62967-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.