Author
Listed:
- Eric A. Roots
(Laurentian University
Czech Academy of Sciences)
- Graham J. Hill
(Czech Academy of Sciences)
- Ben M. Frieman
(Department of Geology and Geological Engineering)
- Richard S. Smith
(Laurentian University)
- James A. Craven
(Geological Survey of Canada)
- David B. Snyder
(Laurentian University
Geological Survey of Canada)
- Andrew J. Calvert
(Department of Earth Sciences)
Abstract
Archean cratons represent stable continental domains which form the nuclei of the Earth’s continents due to their thick ( >200 km), mechanically resistant keels. Cratons and their stable roots form through melt and fluid depletion processes. However, metasomatic refertilization may occur due to processes coeval with craton construction and/or overprinting episodes. Magnetotellurics, a geophysical method measuring subsurface electrical resistivity, is sensitive to the compositional and thermal states of the lithosphere and is useful in mapping depleted and refertilized cratonic domains. Here we show the results of a 3D anisotropic inversion to image the lithospheric resistivity structure of the western Superior Craton. The resistivity model reveals widespread (500×300 km2) anisotropy with a north-south conductive axis at depths ~100–200 km, inferred to represent phlogopite-bearing channels emplaced during mantle plume activity. The results have implications for our understanding of the modification and long-term stability of cratonic lithosphere, and the imaging and interpretation of their preserved geophysical signatures.
Suggested Citation
Eric A. Roots & Graham J. Hill & Ben M. Frieman & Richard S. Smith & James A. Craven & David B. Snyder & Andrew J. Calvert, 2025.
"Channelized metasomatism in Archean cratonic roots as a mechanism of lithospheric refertilization,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62912-6
DOI: 10.1038/s41467-025-62912-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62912-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.