IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62859-8.html
   My bibliography  Save this article

Structural basis for membrane microdomain formation by a human Stomatin complex

Author

Listed:
  • Jack Stoner

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Shufang Li

    (Washington University School of Medicine)

  • Ziao Fu

    (Washington University School of Medicine
    Washington University School of Medicine)

Abstract

Biological membranes are not just passive barriers—they actively sense and respond to mechanical forces, in part through specialized proteins embedded within them. Among these are Stomatin-family proteins, which are known to influence membrane stiffness and regulate ion channels, yet how they achieve these functions at the molecular level has remained elusive. Here, we report the 2.2 Å cryo-electron microscopy structure of the human Stomatin complex in a native membrane environment. We find that Stomatin assembles into a 16-subunit ring-shaped homo-oligomer, forming a ~12 nm-wide cage that defines a mechanically distinct, curvature-resistant membrane microdomain. While the majority of the complex exhibits C16 symmetry, the C-terminal domains adopt two alternating conformations, producing a symmetry-broken hydrophobic β-barrel pore with local C8 symmetry. The membrane beneath the complex remains flat despite surrounding curvature, indicating localized membrane stiffening. The structure reveals a conserved network of inter-subunit salt bridges that stabilize the assembly. These findings provide a molecular framework for how Stomatin oligomers shape membrane architecture and mechanics, offering insight into their roles in mechanotransduction and diseases such as nephrotic syndrome.

Suggested Citation

  • Jack Stoner & Shufang Li & Ziao Fu, 2025. "Structural basis for membrane microdomain formation by a human Stomatin complex," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62859-8
    DOI: 10.1038/s41467-025-62859-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62859-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62859-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62859-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.