Author
Listed:
- Jonathan Kuhn
(Johns Hopkins School of Medicine)
- Parijat Banerjee
(Johns Hopkins University)
- Andrew Haye
(Johns Hopkins School of Medicine)
- Douglas N. Robinson
(Johns Hopkins School of Medicine)
- Pablo A. Iglesias
(Johns Hopkins University)
- Peter N. Devreotes
(Johns Hopkins School of Medicine)
Abstract
To navigate complex environments, cells integrate chemical and mechanical cues through dynamic feedback between signaling networks and the cytoskeleton. Using synthetic tools to manipulate cytoskeletal components in Dictyostelium and human neutrophils, we uncover feedback mechanisms that regulate Ras/PI3K signaling and control front- and back-states of the cell. Increased branched actin and actin polymerization enhance Ras/PI3K activity. Similarly, decreased myosin II assembly also elevates signaling and chemotactic sensitivity. Conversely, inhibiting branched actin increases cortical actin and blocks Ras/PI3K activation—an effect lessened by decreasing filamentous actin or in myosin II-null cells. Activating RacE to increase actin crosslinking suppresses Ras activity without triggering branched actin nucleators, yet promotes spreading and protrusion. These results informed a computational model incorporating positive cytoskeletal feedback loops, which predicts shifts in polarity and migration with cytoskeletal changes. We propose that such feedback locally tunes signal network excitability, enabling cells to navigate tissues, extracellular matrix, and fluid environments.
Suggested Citation
Jonathan Kuhn & Parijat Banerjee & Andrew Haye & Douglas N. Robinson & Pablo A. Iglesias & Peter N. Devreotes, 2025.
"Complementary cytoskeletal feedback loops control signal transduction excitability and cell polarity,"
Nature Communications, Nature, vol. 16(1), pages 1-21, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62799-3
DOI: 10.1038/s41467-025-62799-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62799-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.