Ultrasoft and fast self-healing poly(ionic liquid) electrode for dielectric elastomer actuators
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-62796-6
Download full text from publisher
References listed on IDEAS
- Zhengyang Kong & Elvis K. Boahen & Dong Jun Kim & Fenglong Li & Joo Sung Kim & Hyukmin Kweon & So Young Kim & Hanbin Choi & Jin Zhu & Wu Ying & Do Hwan Kim, 2024. "Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Matthew Wei Ming Tan & Hyunwoo Bark & Gurunathan Thangavel & Xuefei Gong & Pooi See Lee, 2022. "Photothermal modulated dielectric elastomer actuator for resilient soft robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Wenwen Feng & Lin Sun & Zhekai Jin & Lili Chen & Yuncong Liu & Hao Xu & Chao Wang, 2024. "A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu Bin Ying & Joo Sung Kim & Zhengyang Kong & Zhe Yu & Elvis K. Boahen & Fenglong Li & Chao Chen & Ying Tian & Ji Hong Kim & Hanbin Choi & Jung-Yong Lee & Jin Zhu & Do Hwan Kim, 2025. "A reconfigurable piezo-ionotropic polymer membrane for sustainable multi-resonance acoustic sensing," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Lin Sun & Wenwen Feng & Yuncong Liu & Lili Chen & Tao Chen & Zhekai Jin & Chao Wang, 2025. "Elastic and ultra stable ionic conductors for long-life-time soft robots working at extreme environments," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
- Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Li-Juan Yin & Boyuan Du & Hui-Yi Hu & Wen-Zhuo Dong & Yu Zhao & Zili Zhang & Huichan Zhao & Shao-Long Zhong & Chenyi Yi & Liangti Qu & Zhi-Min Dang, 2024. "A high-response-frequency bimodal network polyacrylate elastomer with ultrahigh power density under low electric field," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62796-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62796-6.html