IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62732-8.html
   My bibliography  Save this article

Gamma-band synchronization between neurons in the visual cortex is causal for effective information processing and behavior

Author

Listed:
  • Eric Drebitz

    (University of Bremen)

  • Lukas-Paul Rausch

    (University of Bremen)

  • Andreas K. Kreiter

    (University of Bremen)

Abstract

Successful behavior relies on the brain’s ability to process selectively attended information while suppressing irrelevant information. Visual neurons show such functional flexibility by selectively responding to subsets of inputs representing attended objects while ignoring those conveying information about irrelevant objects. Several neuronal mechanisms have been proposed to explain this attention-dependent processing, yet none has been proven as a causal mechanism. One requires precise synchronization between spikes carrying relevant information and the gamma-oscillatory activity in receiving neurons. To investigate its causal relevance, we electrically evoked single volleys of spikes in area V2 of two male macaque monkeys performing a selective-attention task and recorded neuronal activity in downstream area V4. Strongly depending on the γ-phase, when these additional spikes arrived in V4, they impaired monkeys’ performance and evoked a spiking response. This establishes the causal relevance of subtle changes in spike timing, specifically by phase synchronization, for neuronal mechanisms serving cognitive processes.

Suggested Citation

  • Eric Drebitz & Lukas-Paul Rausch & Andreas K. Kreiter, 2025. "Gamma-band synchronization between neurons in the visual cortex is causal for effective information processing and behavior," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62732-8
    DOI: 10.1038/s41467-025-62732-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62732-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62732-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62732-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.